基于YOLO实现的口罩佩戴检测 - python opemcv 深度学习 计算机竞赛

文章目录

  • 0 前言
  • 1 课题介绍
  • 2 算法原理
    • 2.1 算法简介
    • 2.2 网络架构
  • 3 关键代码
  • 4 数据集
    • 4.1 安装
    • 4.2 打开
    • 4.3 选择yolo标注格式
    • 4.4 打标签
    • 4.5 保存
  • 5 训练
  • 6 实现效果
    • 6.1 pyqt实现简单GUI
    • 6.3 视频识别效果
    • 6.4 摄像头实时识别
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于YOLO实现的口罩佩戴检测 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 课题介绍

受全球新冠肺炎疫情影响,虽然目前中国疫情防控取 得了良好效果,绝大多数地区处于疫情低风险,但个别地 区仍有零星散发病例和局部聚集性疫情。在机场、地 铁
站、医院等公共服务和重点机构场所规定必须佩戴口罩, 口罩佩戴检查已成为疫情防控的必备操作。目前,口罩 佩戴检查多为人工检查方式,如高铁上会有乘务人员一节
节车厢巡逻检查提醒乘客佩戴口罩,在医院等高危场所也 会有医务人员提醒时刻戴好口罩。人工检查方式存在检 查效率低下、难以及时发现错误佩戴口罩以及未佩戴口罩
行为等弊端。采用深度学习目标检测方法设计一个具有口罩识别功能的防疫系统,可以大大提高检测效率。

2 算法原理

2.1 算法简介

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;
基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;
Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构;
Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

2.2 网络架构

在这里插入图片描述

上图展示了YOLOv5目标检测算法的整体框图。对于一个目标检测算法而言,我们通常可以将其划分为4个通用的模块,具体包括:输入端、基准网络、Neck网络与Head输出端,对应于上图中的4个红色模块。YOLOv5算法具有4个版本,具体包括:YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四种,本文重点讲解YOLOv5s,其它的版本都在该版本的基础上对网络进行加深与加宽。

  • 输入端-输入端表示输入的图片。该网络的输入图像大小为608*608,该阶段通常包含一个图像预处理阶段,即将输入图像缩放到网络的输入大小,并进行归一化等操作。在网络训练阶段,YOLOv5使用Mosaic数据增强操作提升模型的训练速度和网络的精度;并提出了一种自适应锚框计算与自适应图片缩放方法。
  • 基准网络-基准网络通常是一些性能优异的分类器种的网络,该模块用来提取一些通用的特征表示。YOLOv5中不仅使用了CSPDarknet53结构,而且使用了Focus结构作为基准网络。
  • Neck网络-Neck网络通常位于基准网络和头网络的中间位置,利用它可以进一步提升特征的多样性及鲁棒性。虽然YOLOv5同样用到了SPP模块、FPN+PAN模块,但是实现的细节有些不同。
  • Head输出端-Head用来完成目标检测结果的输出。针对不同的检测算法,输出端的分支个数不尽相同,通常包含一个分类分支和一个回归分支。YOLOv4利用GIOU_Loss来代替Smooth L1 Loss函数,从而进一步提升算法的检测精度。

3 关键代码

class Detect(nn.Module):stride = None  # strides computed during buildonnx_dynamic = False  # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.zeros(1)] * self.nl  # init gridself.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use in-place ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_gridclass Model(nn.Module):def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classessuper().__init__()if isinstance(cfg, dict):self.yaml = cfg  # model dictelse:  # is *.yamlimport yaml  # for torch hubself.yaml_file = Path(cfg).namewith open(cfg, encoding='ascii', errors='ignore') as f:self.yaml = yaml.safe_load(f)  # model dict# Define modelch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channelsif nc and nc != self.yaml['nc']:LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")self.yaml['nc'] = nc  # override yaml valueif anchors:LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')self.yaml['anchors'] = round(anchors)  # override yaml valueself.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelistself.names = [str(i) for i in range(self.yaml['nc'])]  # default namesself.inplace = self.yaml.get('inplace', True)# Build strides, anchorsm = self.model[-1]  # Detect()if isinstance(m, Detect):s = 256  # 2x min stridem.inplace = self.inplacem.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forwardm.anchors /= m.stride.view(-1, 1, 1)check_anchor_order(m)self.stride = m.strideself._initialize_biases()  # only run once# Init weights, biasesinitialize_weights(self)self.info()LOGGER.info('')def forward(self, x, augment=False, profile=False, visualize=False):if augment:return self._forward_augment(x)  # augmented inference, Nonereturn self._forward_once(x, profile, visualize)  # single-scale inference, traindef _forward_augment(self, x):img_size = x.shape[-2:]  # height, widths = [1, 0.83, 0.67]  # scalesf = [None, 3, None]  # flips (2-ud, 3-lr)y = []  # outputsfor si, fi in zip(s, f):xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))yi = self._forward_once(xi)[0]  # forward# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # saveyi = self._descale_pred(yi, fi, si, img_size)y.append(yi)y = self._clip_augmented(y)  # clip augmented tailsreturn torch.cat(y, 1), None  # augmented inference, traindef _forward_once(self, x, profile=False, visualize=False):y, dt = [], []  # outputsfor m in self.model:if m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)return xdef _descale_pred(self, p, flips, scale, img_size):# de-scale predictions following augmented inference (inverse operation)if self.inplace:p[..., :4] /= scale  # de-scaleif flips == 2:p[..., 1] = img_size[0] - p[..., 1]  # de-flip udelif flips == 3:p[..., 0] = img_size[1] - p[..., 0]  # de-flip lrelse:x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scaleif flips == 2:y = img_size[0] - y  # de-flip udelif flips == 3:x = img_size[1] - x  # de-flip lrp = torch.cat((x, y, wh, p[..., 4:]), -1)return pdef _clip_augmented(self, y):# Clip YOLOv5 augmented inference tailsnl = self.model[-1].nl  # number of detection layers (P3-P5)g = sum(4 ** x for x in range(nl))  # grid pointse = 1  # exclude layer counti = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indicesy[0] = y[0][:, :-i]  # largei = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indicesy[-1] = y[-1][:, i:]  # smallreturn ydef _profile_one_layer(self, m, x, dt):c = isinstance(m, Detect)  # is final layer, copy input as inplace fixo = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPst = time_sync()for _ in range(10):m(x.copy() if c else x)dt.append((time_sync() - t) * 100)if m == self.model[0]:LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')if c:LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency# https://arxiv.org/abs/1708.02002 section 3.3# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.m = self.model[-1]  # Detect() modulefor mi, s in zip(m.m, m.stride):  # fromb = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # clsmi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)def _print_biases(self):m = self.model[-1]  # Detect() modulefor mi in m.m:  # fromb = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)LOGGER.info(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))# def _print_weights(self):#     for m in self.model.modules():#         if type(m) is Bottleneck:#             LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weightsdef fuse(self):  # fuse model Conv2d() + BatchNorm2d() layersLOGGER.info('Fusing layers... ')for m in self.model.modules():if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update convdelattr(m, 'bn')  # remove batchnormm.forward = m.forward_fuse  # update forwardself.info()return selfdef autoshape(self):  # add AutoShape moduleLOGGER.info('Adding AutoShape... ')m = AutoShape(self)  # wrap modelcopy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=())  # copy attributesreturn mdef info(self, verbose=False, img_size=640):  # print model informationmodel_info(self, verbose, img_size)def _apply(self, fn):# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffersself = super()._apply(fn)m = self.model[-1]  # Detect()if isinstance(m, Detect):m.stride = fn(m.stride)m.grid = list(map(fn, m.grid))if isinstance(m.anchor_grid, list):m.anchor_grid = list(map(fn, m.anchor_grid))return selfdef parse_model(d, ch):  # model_dict, input_channels(3)LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchorsno = na * (nc + 5)  # number of outputs = anchors * (classes + 5)layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outfor i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, argsm = eval(m) if isinstance(m, str) else m  # eval stringsfor j, a in enumerate(args):try:args[j] = eval(a) if isinstance(a, str) else a  # eval stringsexcept NameError:passn = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gainif m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:c1, c2 = ch[f], args[0]if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in [BottleneckCSP, C3, C3TR, C3Ghost]:args.insert(2, n)  # number of repeatsn = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)elif m is Detect:args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2else:c2 = ch[f]m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module typenp = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number paramsLOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # printsave.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []ch.append(c2)return nn.Sequential(*layers), sorted(save)

4 数据集

大家可采用公开标注好的数据集。如果为了更深入的学习也可自己标注,但过程相对比较繁琐,麻烦。

以下简单介绍数据标注的相关方法,数据标注这里推荐的软件是labelimg,学长以火灾数据集为例!

4.1 安装

通过pip指令即可安装


pip install labelimg

4.2 打开

在命令行中输入labelimg即可打开

在这里插入图片描述

在这里插入图片描述
打开你所需要进行标注的文件夹

4.3 选择yolo标注格式

点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo。

在这里插入图片描述

4.4 打标签

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok。

注:若要删除目标,右键目标区域,delete即可

在这里插入图片描述

4.5 保存

点击save,保存txt。

在这里插入图片描述

打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。

在这里插入图片描述

5 训练

修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述

6 实现效果

6.1 pyqt实现简单GUI

from PyQt5 import QtCore, QtGui, QtWidgetsclass Ui_Win_mask(object):def setupUi(self, Win_mask):Win_mask.setObjectName("Win_mask")Win_mask.resize(1107, 868)Win_mask.setStyleSheet("QString qstrStylesheet = \"background-color:rgb(43, 43, 255)\";\n""ui.pushButton->setStyleSheet(qstrStylesheet);")self.frame = QtWidgets.QFrame(Win_mask)self.frame.setGeometry(QtCore.QRect(10, 140, 201, 701))self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)self.frame.setFrameShadow(QtWidgets.QFrame.Raised)self.frame.setObjectName("frame")self.pushButton = QtWidgets.QPushButton(self.frame)self.pushButton.setGeometry(QtCore.QRect(10, 40, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton.setFont(font)self.pushButton.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton.setObjectName("pushButton")self.pushButton_2 = QtWidgets.QPushButton(self.frame)self.pushButton_2.setGeometry(QtCore.QRect(10, 280, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton_2.setFont(font)self.pushButton_2.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton_2.setObjectName("pushButton_2")self.pushButton_3 = QtWidgets.QPushButton(self.frame)self.pushButton_3.setGeometry(QtCore.QRect(10, 500, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)font.setStrikeOut(False)self.pushButton_3.setFont(font)self.pushButton_3.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton_3.setObjectName("pushButton_3")self.frame_2 = QtWidgets.QFrame(Win_mask)self.frame_2.setGeometry(QtCore.QRect(230, 110, 1031, 861))self.frame_2.setStyleSheet("")self.frame_2.setFrameShape(QtWidgets.QFrame.StyledPanel)self.frame_2.setFrameShadow(QtWidgets.QFrame.Raised)self.frame_2.setObjectName("frame_2")self.show_picture_page = QtWidgets.QStackedWidget(self.frame_2)self.show_picture_page.setGeometry(QtCore.QRect(-10, 0, 871, 731))font = QtGui.QFont()font.setBold(True)font.setWeight(75)self.show_picture_page.setFont(font)self.show_picture_page.setObjectName("show_picture_page")self.photo = QtWidgets.QWidget()self.photo.setObjectName("photo")self.label = QtWidgets.QLabel(self.photo)self.label.setGeometry(QtCore.QRect(10, 30, 641, 641))font = QtGui.QFont()font.setFamily("Arial")font.setPointSize(36)self.label.setFont(font)self.label.setText("")self.label.setPixmap(QtGui.QPixmap("./images/UI/up.jpeg"))self.label.setObjectName("label")self.pushButton_4 = QtWidgets.QPushButton(self.photo)self.pushButton_4.setGeometry(QtCore.QRect(680, 220, 171, 61))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton_4.setFont(font)self.pushButton_4.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.pushButton_4.setObjectName("pushButton_4")self.pushButton_5 = QtWidgets.QPushButton(self.photo)self.pushButton_5.setGeometry(QtCore.QRect(680, 400, 171, 61))font = QtGui.QFont()font.setUnderline(True)self.pushButton_5.setFont(font)self.pushButton_5.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.pushButton_5.setObjectName("pushButton_5")self.show_picture_page.addWidget(self.photo)self.videos = QtWidgets.QWidget()self.videos.setObjectName("videos")self.vid_img = QtWidgets.QLabel(self.videos)self.vid_img.setGeometry(QtCore.QRect(10, 30, 640, 640))font = QtGui.QFont()font.setFamily("Arial")font.setPointSize(36)self.vid_img.setFont(font)self.vid_img.setText("")self.vid_img.setPixmap(QtGui.QPixmap("./images/UI/up.jpeg"))self.vid_img.setObjectName("vid_img")self.mp4_detection_btn = QtWidgets.QPushButton(self.videos)self.mp4_detection_btn.setGeometry(QtCore.QRect(680, 220, 171, 61))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.mp4_detection_btn.setFont(font)self.mp4_detection_btn.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.mp4_detection_btn.setObjectName("mp4_detection_btn")self.vid_stop_btn = QtWidgets.QPushButton(self.videos)self.vid_stop_btn.setGeometry(QtCore.QRect(680, 400, 171, 61))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.vid_stop_btn.setFont(font)self.vid_stop_btn.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.vid_stop_btn.setObjectName("vid_stop_btn")self.show_picture_page.addWidget(self.videos)self.camera = QtWidgets.QWidget()self.camera.setObjectName("camera")self.webcam_detection_btn = QtWidgets.QPushButton(self.camera)self.webcam_detection_btn.setGeometry(QtCore.QRect(680, 220, 171, 61))self.webcam_detection_btn.setBaseSize(QtCore.QSize(2, 2))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.webcam_detection_btn.setFont(font)self.webcam_detection_btn.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.webcam_detection_btn.setObjectName("webcam_detection_btn")self.cam_img = QtWidgets.QLabel(self.camera)self.cam_img.setGeometry(QtCore.QRect(10, 30, 640, 640))font = QtGui.QFont()font.setFamily("Arial")font.setPointSize(36)self.cam_img.setFont(font)self.cam_img.setText("")self.cam_img.setPixmap(QtGui.QPixmap("./images/UI/up.jpeg"))self.cam_img.setObjectName("cam_img")self.vid_stop_btn_cma = QtWidgets.QPushButton(self.camera)self.vid_stop_btn_cma.setGeometry(QtCore.QRect(680, 400, 171, 61))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.vid_stop_btn_cma.setFont(font)self.vid_stop_btn_cma.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.vid_stop_btn_cma.setObjectName("vid_stop_btn_cma")self.show_picture_page.addWidget(self.camera)self.label_2 = QtWidgets.QLabel(Win_mask)self.label_2.setGeometry(QtCore.QRect(430, 40, 251, 71))font = QtGui.QFont()font.setPointSize(24)font.setBold(True)font.setItalic(False)font.setUnderline(True)font.setWeight(75)self.label_2.setFont(font)self.label_2.setStyleSheet("Font{background-color:rgb(85, 170, 255);}")self.label_2.setObjectName("label_2")self.listView = QtWidgets.QListView(Win_mask)self.listView.setGeometry(QtCore.QRect(-5, 1, 1121, 871))self.listView.setStyleSheet(" \n""background-image: url(:/bg.png);")self.listView.setObjectName("listView")self.listView.raise_()self.frame.raise_()self.frame_2.raise_()self.label_2.raise_()self.retranslateUi(Win_mask)self.show_picture_page.setCurrentIndex(0)QtCore.QMetaObject.connectSlotsByName(Win_mask)## 

6.2 图片识别效果

在这里插入图片描述

6.3 视频识别效果

6.4 摄像头实时识别

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/117074.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

树与二叉树(考研版)

文章目录 树与二叉树树的基本概念结点、树属性的描述树的性质 二叉树的概念二叉树的性质二叉树的构建二叉树的遍历先序遍历中序遍历后序遍历层次遍历 递归算法和非递归算法的转换源代码 线索二叉树二叉树的线索化线索二叉树 找前驱/后继 树和森林树的存储 树与二叉树的应用哈夫…

Python 深度学习入门之CNN

CNN 前言一、CNN简介1、简介2、结构 二、CNN简介1、输出层2、卷积层3、池化层4、全连接层5、输出层 前言 1024快乐&#xff01;1024快乐&#xff01;今天开新坑&#xff0c;学点深度学习相关的&#xff0c;说下比较火的CNN。 一、CNN简介 1、简介 CNN的全称是Convolutiona…

java中的异常,以及出现异常后的处理【try,catch,finally】

一、异常概念 异常 &#xff1a;指的是程序在执行过程中&#xff0c;出现的非正常的情况&#xff0c;最终会导致JVM的非正常停止。 注意: 在Java等面向对象的编程语言中&#xff0c;异常本身是一个类&#xff0c;产生异常就是创建异常对象并抛出了一个异常对象。Java处理异常的…

Nginx 配置文件解读

一.配置文件解读 nginx配置文件主要分为四个部分&#xff1a; main{ #&#xff08;全局设置&#xff09;http{ #服务器配置upstream{} #&#xff08;负载均衡服务器设置&#xff09;server{ #&#xff08;主机设置&#xff1a;主要用于指定主机和端口&#xff09;location{} …

CUDA学习笔记(十四) Constant Memory

转载至https://www.cnblogs.com/1024incn/tag/CUDA/ CONSTANT MEMORY constant Memory对于device来说只读但是对于host是可读可写。constant Memory和global Memory一样都位于DRAM&#xff0c;并且有一个独立的on-chip cache&#xff0c;比直接从constant Memory读取要快得多…

【C++笔记】C++继承

【C笔记】C继承 一、继承的概念二、继承的语法和权限三、父类和子类成员之间的关系3.1、子类赋值给父类(切片)3.2、同名成员 四、子类中的默认成员函数4.1、构造函数4.2、拷贝构造4.3、析构函数 五、C继承大坑之“菱形继承”5.1、什么是“菱形继承”5.2、解决方法 一、继承的概…

数据结构-- 并查集

0. 引入 并查集是来解决等价问题的数据结构。 离散数学中的二元关系。 等价关系需满足自反性、对称性、传递性。 a ∈ S , a R a a R b & b R a a R b ∩ b R c > a R c a \in S, aRa \\ aRb \& bRa \\ aRb \cap bRc >aRc a∈S,aRaaRb&bRaaRb∩bRc>a…

【Opencv】OpenCV使用CMake和MinGW的编译安装出错解决

编译时出现的错误&#xff1a; mingw32-make[1]: *** [modules/core/CMakeFiles/opencv_core.dir/all] Error 2 Makefile:161: recipe for target ‘all’ failed mingw32-make: *** [all] Error 2解决方法&#xff1a; 根据贴吧老哥的解答&#xff0c;发现是mingw版本有问题导…

【JAVA学习笔记】43 - 枚举类

项目代码 https://github.com/yinhai1114/Java_Learning_Code/tree/main/IDEA_Chapter11/src/com/yinhai/enum_ 〇、创建时自动填入版权 作者等信息 如何在每个文件创建的时候打入自己的信息以及版权呢 菜单栏-File-setting-Editor-File and Code Templaters -Includes-输入信…

自动化测试07Selenium01

目录 什么是自动化测试 Selenium介绍 Selenium是什么 Selenium特点 工作原理 SeleniumJava环境搭建 Selenium常用的API使用 定位元素findElement CSS选择语法 id选择器&#xff1a;#id 类选择 .class 标签选择器 标签名 后代选择器 父级选择器 自己选择器 xpath …

2.1 向量与线性方程组

一、行图像与列图像 线性代数的中心问题是求解线性方程组。线性的意思是这些方程的未知数是一次的&#xff0c;即每个未知数只会乘数字&#xff0c;而不会出现 x x x 与 y y y 相乘的项。下面是一个由两个未知数组成的方程组&#xff1a; 两个方程 两个未知数 { x − 2 y 1…

杂谈:DC对Verilog和SystemVerilog语言的支持

DC对Verilog和SystemVerilog语言的支持 设计语言用哪种&#xff1f;Design Compiler对二者的支持简单的fsm电路测试测试结果对比写在最后 设计语言用哪种&#xff1f; 直接抛出结论&#xff1a;先有电路&#xff0c;后为描述。设计端而言&#xff0c;没有语言的高低好坏&#…

妙手ERP功能更新丨Shopee全球产品支持使用定价模板修改价格、Ozon新增SKU模板 、Temu采集箱支持添加货源链接......

为了给卖家朋友带来更好的使用体验&#xff0c;更高效地运营跨境店铺&#xff0c;妙手ERP在近两周优化了以下多项功能。 01、平台授权模块 TikTok - 支持授权美国跨境店及ACCU店铺&#xff0c;TikTok平台各功能均可使用 02、产品模块优化 全平台 - 支持产品重量单位切换 Sho…

centos搭建elastic集群

1、环境可以在同一台集群上搭建elastic&#xff0c;也可以在三台机器上搭建&#xff0c;这次演示的是在同一台机器搭建机器。 2、下载elastic &#xff1a;https://www.elastic.co/cn/downloads/past-releases#elasticsearch 2、​​​​​​ tar -zxvf elasticsearch-xxx-版…

KNN(K近邻)水仙花的分类(含答案)

题目 以下采用K-NN算法来解决水仙花的分类问题&#xff0c;每个样本有两个特征&#xff0c;第一个为水仙花的花萼长度&#xff0c;第二个为水仙花 的花萼宽度&#xff0c;具体数据见表&#xff0c; 1&#xff09;设置k3&#xff0c; 采用欧式距离&#xff0c;分析分类精度为多少…

vue如何使用冻结对象提升代码效率及其原理解析

先给大家伙整个实际工作中一定会碰到的问题 如下vue dome ,它的代码非常简单功能也1非常简单,就是一个按钮,点击后会显示有多少条数据 来看看源码, html部分就是一个按钮绑定了一个loadData事件,然后在p标签内展示了这个myData这个数据的长度 <template><div id&quo…

电解电容寿命与哪些因素有关?

电解电容在各类电源及电子产品中是不可替代的元器件&#xff0c;这些电子产品中由于应用环境的原因&#xff0c;使它成为最脆弱的一环&#xff0c;所以&#xff0c;电解电容的寿命也直接影响了电子产品的使用寿命。 一、电解电容失效模式与因素概述 铝电解电容器正极、负极引出…

proteus中仿真arduino的水位测试传感器

一、原理介绍 我们这里使用的水位传感器&#xff0c;只能说是一个小实验用途的水位传感器。我们首先上图 如上图所示&#xff0c;线没有连接&#xff0c;传感器由许5对裸露在外的铜线片作为传感部分&#xff0c;当浸入水中时这些铜线片会被水桥接。 这些被水连接起来的铜线&a…

最新Tuxera NTFS2023最新版Mac读写NTFS磁盘工具 更新详情介绍

Tuxera NTFS for Mac是一款Mac系统NTFS磁盘读写软件。在系统默认状态下&#xff0c;MacOSX只能实现对NTFS的读取功能&#xff0c;Tuxera NTFS可以帮助MacOS 系统的电脑顺利实现对NTFS分区的读/写功能。Tuxera NTFS 2023完美兼容最新版本的MacOS 11 Big Sur&#xff0c;在M1芯片…

Redis内存回收机制-内存淘汰策略和过期策略

Redis是基于内存操作的非关系型数据库&#xff0c;在内存空间不足的时候&#xff0c;为了保证程序的运行和命中率&#xff0c;就会淘汰一部分数据。如何淘汰数据&#xff1f;这就是Redis的内存回收策略。 Redis中的内存回收策略主要有两个方面&#xff1a; Redis过期策略&#…