目录
1--Pytorch-FX量化
2--校准模型
3--代码实例
3-1--主函数
3-2--prepare_dataloader函数
3-3--训练和测试函数
1--Pytorch-FX量化
Pytorch在torch.quantization.quantize_fx中提供了两个API,即prepare_fx和convert_fx。
prepare_fx的作用是准备量化,其在输入模型里按照设定的规则qconfig_dict来插入观察节点,进行的工作包括:
1. 将nn.Module转换为GraphModule。
2. 合并算子,例如将Conv、BN和Relu算子进行合并(通过打印模型可以查看合并的算子)。
3. 在Conv和Linear等OP前后插入Observer, 用于观测激活值Feature map的特征(权重的最大最小值),计算scale和zero_point。
convert_fx的作用是根据scale和zero_point来将模型进行量化。
2--校准模型
完整项目代码参考:ljf69/Model-Deployment-Notes
在对原始模型model调用prepare_fx()后得到prepare_model,一般需要对模型进行校准,校准后再调用convert_fx()进行模型的量化。
3--代码实例
3-1--主函数
import os
import copyimport torch
import torch.nn as nn
from torchvision.models.resnet import resnet18
from torch.quantization import get_default_qconfig
from torch.quantization.quantize_fx import prepare_fx, convert_fx
from torch.ao.quantization.fx.graph_module import ObservedGraphModulefrom dataloader import prepare_dataloader
from train_val import train_model, evaluate_model# 量化模型
def quant_fx(model):# 使用Pytorch中的FX模式对模型进行量化model.eval()qconfig = get_default_qconfig("fbgemm") # 默认是静态量化qconfig_dict = {"": qconfig,}model_to_quantize = copy.deepcopy(model)# 通过调用prepare_fx和convert_fx直接量化模型prepared_model = prepare_fx(model_to_quantize, qconfig_dict)# print("prepared model: ", prepared_model) # 打印模型quantized_model = convert_fx(prepared_model)# print("quantized model: ", quantized_model) # 打印模型# 保存量化后的模型torch.save(quantized_model.state_dict(), "r18_quant.pth")# 校准函数
def calib_quant_model(model, calib_dataloader):# 判断model一定是ObservedGraphModule,即一定是量化模型,而不是原始模型nn.moduleassert isinstance(model, ObservedGraphModule), "model must be a perpared fx ObservedGraphModule."model.eval()with torch.inference_mode():for inputs, labels in calib_dataloader:model(inputs)print("calib done.")# 比较校准前后的差异
def quant_calib_and_eval(model, test_loader):model.to(torch.device("cpu"))model.eval()qconfig = get_default_qconfig("fbgemm")qconfig_dict = {"": qconfig,}# 原始模型(未量化前的结果)print("model:")evaluate_model(model, test_loader)# 量化模型(未经过校准的结果)model2 = copy.deepcopy(model)model_prepared = prepare_fx(model2, qconfig_dict)model_int8 = convert_fx(model_prepared)print("Not calibration model_int8:")evaluate_model(model_int8, test_loader)# 通过原始模型转换为量化模型model3 = copy.deepcopy(model)model_prepared = prepare_fx(model3, qconfig_dict) # 将模型准备为量化模型,即插入观察节点calib_quant_model(model_prepared, test_loader) # 使用数据对模型进行校准model_int8 = convert_fx(model_prepared) # 调用convert_fx将模型设置为量化模型torch.save(model_int8.state_dict(), "r18_quant_calib.pth") # 保存校准后的模型# 量化模型(已经过校准的结果)print("Do calibration model_int8:")evaluate_model(model_int8, test_loader)if __name__ == "__main__":# 准备训练数据和测试数据train_loader, test_loader = prepare_dataloader()# 定义模型model = resnet18(pretrained=True)model.fc = nn.Linear(512, 10)# 训练模型(如果事先没有训练)if os.path.exists("r18_row.pth"): # 之前训练过就直接加载权重model.load_state_dict(torch.load("r18_row.pth", map_location="cpu"))else:train_model(model, train_loader, test_loader, torch.device("cuda"))print("train finished.")torch.save(model.state_dict(), "r18_row.pth")# 量化模型quant_fx(model)# 对比是否进行校准的影响quant_calib_and_eval(model, test_loader)
3-2--prepare_dataloader函数
# 准备训练数据和测试数据
def prepare_dataloader(num_workers=8, train_batch_size=128, eval_batch_size=256):train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])train_set = torchvision.datasets.CIFAR10(root="data", train=True, download=True, transform=train_transform)test_set = torchvision.datasets.CIFAR10(root="data", train=False, download=True, transform=test_transform)train_sampler = torch.utils.data.RandomSampler(train_set)test_sampler = torch.utils.data.SequentialSampler(test_set)train_loader = torch.utils.data.DataLoader(dataset=train_set,batch_size=train_batch_size,sampler=train_sampler,num_workers=num_workers,)test_loader = torch.utils.data.DataLoader(dataset=test_set,batch_size=eval_batch_size,sampler=test_sampler,num_workers=num_workers,)return train_loader, test_loader
3-3--训练和测试函数
# 训练模型,用于后面的量化
def train_model(model, train_loader, test_loader, device):learning_rate = 1e-2num_epochs = 20criterion = nn.CrossEntropyLoss()model.to(device)optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=1e-5)for epoch in range(num_epochs):# Trainingmodel.train()running_loss = 0running_corrects = 0for inputs, labels in train_loader:inputs = inputs.to(device)labels = labels.to(device)optimizer.zero_grad()outputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)train_loss = running_loss / len(train_loader.dataset)train_accuracy = running_corrects / len(train_loader.dataset)# Evaluationmodel.eval()eval_loss, eval_accuracy = evaluate_model(model=model, test_loader=test_loader, device=device, criterion=criterion)print("Epoch: {:02d} Train Loss: {:.3f} Train Acc: {:.3f} Eval Loss: {:.3f} Eval Acc: {:.3f}".format(epoch, train_loss, train_accuracy, eval_loss, eval_accuracy))return modeldef evaluate_model(model, test_loader, device=torch.device("cpu"), criterion=None):t0 = time.time()model.eval()model.to(device)running_loss = 0running_corrects = 0for inputs, labels in test_loader:inputs = inputs.to(device)labels = labels.to(device)outputs = model(inputs)_, preds = torch.max(outputs, 1)if criterion is not None:loss = criterion(outputs, labels).item()else:loss = 0# statisticsrunning_loss += loss * inputs.size(0)running_corrects += torch.sum(preds == labels.data)eval_loss = running_loss / len(test_loader.dataset)eval_accuracy = running_corrects / len(test_loader.dataset)t1 = time.time()print(f"eval loss: {eval_loss}, eval acc: {eval_accuracy}, cost: {t1 - t0}")return eval_loss, eval_accuracy