【GWO-KELM预测】基于灰狼算法优化核极限学习机回归预测研究(matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码及数据


💥1 概述

GWO-KELM是一种基于灰狼算法(Grey Wolf Optimization,GWO)优化核极限学习机(KELM)回归预测的方法。GWO是一种仿生优化算法,灵感来自于灰狼群体的行为。它通过模拟灰狼群体的捕食行为来搜索最优解。在GWO中,灰狼根据其适应度值和位置来调整其位置和速度,以寻找最优解。通过不断迭代的过程,GWO能够全局搜索和自适应调整参数,从而优化复杂的非线性问题。

在GWO-KELM方法中,首先使用GWO来搜索最优的核函数参数和KELM的超参数。GWO通过模拟灰狼的捕食行为,根据每个个体的适应度值来更新个体的位置和速度,以寻找最优解。在每次迭代中,根据适应度值的大小,更新个体的位置和速度,直到达到停止条件。

在优化过程中,GWO-KELM通过搜索最优的核函数参数和KELM的超参数,进一步提高了KELM的回归预测性能。通过优化核函数参数,可以更好地捕捉输入数据的非线性特征;通过优化KELM的超参数,可以调整模型的复杂度和泛化能力。

基于灰狼算法优化的核极限学习机回归预测是一种将GWO和KELM相结合的方法,用于提高回归预测的性能和准确度。通过GWO的全局搜索和自适应调整参数的能力,可以优化核函数参数和KELM的超参数,进一步提高KELM的回归预测性能。在实际应用中,GWO-KELM可以应用于各种回归预测任务,并具有较好的性能表现。

📚2 运行结果

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]段兴林.基于灰狼算法优化核极限学习机的网络入侵检测研究[J].微型电脑应用, 2019(3):3.DOI:CNKI:SUN:WXDY.0.2019-03-026.

[2]赵超,王延峰,林立.基于改进灰狼算法优化核极限学习机的锂电池动力电池荷电状态估计[J].信息与控制, 2021, 50(6):9.DOI:10.13976/j.cnki.xk.2021.0042.

[3]方一鸣,赵晓东,张攀,等.基于改进灰狼算法和多核极限学习机的铁水硅含量预测建模[J].  2020.DOI:10.7641/CTA.2020.90571.

🌈4 Matlab代码及数据

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/115729.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Dapper中使用字符串作为动态参数查询时,结果不是预期的问题

1、如下图,c.industryId作为string类型当作参数传递,解析时会加单引号,即:”c.industryId“, 生成的查询语句就会变成 -- 这里把c.IndustryGroup 当成实际的值所以会查询不出数据 select b.Name,COUNT(c.Id) Num …

数学建模——最大流问题(配合例子说明)

目录 一、最大流有关的概念 例1 1、容量网络的定义 2、符号设置 3、建立模型 3.1 每条边的容量限制 3.2 平衡条件 3.3 网络的总流量 4、网络最大流数学模型 5、计算 二、最小费用流 例2 【符号说明】 【建立模型】 (1)各条边的流量限制 &a…

Java赋值运算符(=)

赋值运算符是指为变量或常量指定数值的符号。赋值运算符的符号为“”,它是双目运算符,左边的操作数必须是变量,不能是常量或表达式。 其语法格式如下所示: 变量名称表达式内容 在 Java 语言中,“变量名称”和“表达式…

acwing第 126 场周赛 (扩展字符串)

5281. 扩展字符串 一、题目要求 某字符串序列 s0,s1,s2,… 的生成规律如下: s0 DKER EPH VOS GOLNJ ER RKH HNG OI RKH UOPMGB CPH VOS FSQVB DLMM VOS QETH SQBsnDKER EPH VOS GOLNJ UKLMH QHNGLNJ Asn−1AB CPH VOS FSQVB DLMM VOS QHNG Asn−1AB,其…

canvas绘制动态视频并且在视频上加上自定义logo

实现的效果&#xff1a;可以在画布上播放动态视频&#xff0c;并且加上自定义的图片logo放在视频的右下角 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthd…

找不到conda可执行文件:解决方法

1.在新版本的pycharm出现的问题如下&#xff1a; 2.解决方法: 2.1 将anaconda\Scripts\conda.exe选中 2.2选择自己的anconda自己的环境&#xff0c;之后就可以正常创建conda环境

python 之numpy 之随机生成数

文章目录 1. **生成均匀分布的随机浮点数**&#xff1a;2. **生成随机整数**&#xff1a;3. **生成标准正态分布随机数**&#xff1a;4. **生成正态分布随机数**&#xff1a;5. **生成均匀分布的随机浮点数**&#xff1a;6. **生成随机抽样**&#xff1a;7. **设置随机数种子**…

Axi_Lite接口的IP核与地址与缓冲与AxiGP0

AXI Interconnect互连内核将一个或多个 AXI 内存映射主设备连接到一个或多个内存映射从设备。 AXI_GP 接口 AXI_GP 接口是直接连接主机互联和从机互联的端口的。 AXI_HP 接口具有一个 1kB 的数据 FIFO 来做缓冲 [4]&#xff0c;但是 AXI_GP 接口与它不同&#xff0c;没…

24东北大学计算机计划招生数据

2.结语 24的保研名额很多&#xff0c;统考名额就这些&#xff0c;大家根据自己的情况做出选择 东大计算机不好考&#xff0c;但是不代表考不上&#xff01;加油 3.数据来源于官网 官网链接

从传统云架构到云原生生态体系架构的演进

文章目录 概述传统云架构&#xff1a;虚拟化的时代云原生生态体系架构的兴起容器化和微服务架构自动化和自动伸缩基础设施即代码云原生存储和数据库 云原生的影响结语 概述 随着科技的不断发展&#xff0c;云计算领域也经历了巨大的变革。这一演进的核心焦点是从传统云架构过渡…

【Java集合类面试七】、 JDK7和JDK8中的HashMap有什么区别?

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a;JDK7和JDK8中的HashMap有…

pyflink 环境测试以及测试案例

1. py 的 环境以来采用Anaconda环境包 安装版本&#xff1a;https://www.anaconda.com/distribution/#download-section Python3.8.8版本&#xff1a;Anaconda3-2021.05-Linux-x86_64.sh 下载地址 https://repo.anaconda.com/archive/ 2. 安装 bash Anaconda3-2021.05-Linux-x…

基于深度学习网络的蔬菜水果种类识别算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1数据集准备 4.2构建深度学习模型 4.3模型训练 4.4模型评估 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 clc; clear; close all; wa…

java基础面试题

java后端面试题大全 1.java基础1.1 java中和equals的区别1.2 String、StringBuffer、StringBuilder的区别1.3 intern方法的作用及原理1.4 String不可变的含义1.5 static用法、使用位置、实例1.6 为什么静态方法不能调用非静态方法和变量1.7 异常/Exception1.7 try/catch/finall…

【CNN-LSTM预测】基于卷积神经网络-长短期记忆网络的数据分类预测研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

头脑风暴之约瑟夫环问题

一 问题的引入 约瑟夫问题的源头完全可以命名为“自杀游戏”。本着和谐友爱和追求本质的目的&#xff0c;可以把问题描述如下&#xff1a; 现有n个人围成一桌坐下&#xff0c;编号从1到n&#xff0c;从编号为1的人开始报数。报数也从1开始&#xff0c;报到m人离席&#xff0c…

YOLOv5项目实战(1)— 如何去训练模型

前言:Hello大家好,我是小哥谈。YOLOv5基础知识入门系列、YOLOv5源码中的参数超详细解析系列、YOLOv5入门实践系列、YOLOv5论文作图教程系列和YOLOv5算法改进系列学习完成之后,接着就进入YOLOv5项目实战系列了。🎉为了让大家能够牢固地掌握YOLOv5算法,本系列文章就通过一个…

计算机算法分析与设计(18)---回溯法(介绍、子集和问题C++代码)

文章目录 一、回溯法介绍二、子集和问题2.1 知识概述2.2 代码编写 一、回溯法介绍 1. 回溯法&#xff08;back tracking&#xff09;是一种选优搜索法&#xff0c;又称为试探法&#xff0c;有“通用的解题法”之称&#xff0c;按选优条件向前搜索&#xff0c;以达到目标。但当探…

AIGC笔记--基于DDPM实现图片生成

目录 1--扩散模型 2--训练过程 3--损失函数 4--生成过程 5--参考 1--扩散模型 完整代码&#xff1a;ljf69/DDPM 扩散模型包含两个过程&#xff0c;前向扩散过程和反向生成过程。 前向扩散过程对一张图像逐渐添加高斯噪声&#xff0c;直至图像变为随机噪声。 反向生成过程…

C语言求 3*3 矩阵对角线之和

完整代码&#xff1a; // 求 3*3 矩阵对角线之和 #include<stdio.h>int main() {int n3;int arr[3][3];// 输入矩阵printf("请输入矩阵的元素:\n");for (int i 0; i < n; i){for (int j 0; j < n; j){scanf("%d", &arr[i][j]);}}int su…