Python GDAL为具有多个波段的大量栅格图像绘制像素随时间变化走势图

  本文介绍基于Python中的gdal模块,对大量长时间序列的栅格遥感影像文件,绘制其每一个波段中、若干随机指定的像元的时间序列曲线图的方法。

  在之前的文章Python中GDAL批量绘制多时相栅格遥感影像的像元时间序列曲线图(https://blog.csdn.net/zhebushibiaoshifu/article/details/128354151)中,我们就已经介绍过基于gdal模块,对大量多时相栅格图像,批量绘制像元时间序列折线图的方法。不过当时文章中的需求,每1个时相都对应着3个不同的遥感影像文件,而每1个遥感影像文件则都仅仅只有1个波段;而在本文中,我们每1景遥感影像都对应着2个波段,我们最终绘制的多条曲线图,也都来自于这每1景遥感影像的不同波段。

  我们再来明确一下本文的需求。现在有一个文件夹,其中放置了大量的遥感影像文件,如下图所示。其中,所有遥感影像都是同一地区、不同成像时间的图像,其各自的空间参考信息、像元行数与列数等都是一致的,文件名中有表示成像日期的具体字段;且每1景遥感影像都具有2个波段。现在我们希望,在遥感影像覆盖的区域内,随机选取若干的像元,基于这些像元,我们绘制其随时间变化的曲线图。因为我们的每个遥感影像都有2个波段,且都希望绘制出曲线图,因此最终的曲线图一共就有2条曲线。

  明确了需求,我们就可以开始代码的撰写。本文用到的代码如下。

# -*- coding: utf-8 -*-
"""
Created on Tue Jul 25 23:04:41 2023@author: fkxxgis
"""import os
import random
import matplotlib.pyplot as plt
from osgeo import gdaldef load_image(image_path):dataset = gdal.Open(image_path)band1 = dataset.GetRasterBand(1).ReadAsArray()band2 = dataset.GetRasterBand(2).ReadAsArray()del datasetreturn band1, band2def plot_time_series(image_folder, pic_folder, num_pixels):image_files = [file for file in os.listdir(image_folder) if file.endswith(".tif")]band1_merge, band2_merge = [], []i = 0for image_file in image_files:image_path = os.path.join(image_folder, image_file)band1, band2 = load_image(image_path)band1_merge.append(band1)band2_merge.append(band2)i += 1x_size, y_size = band1.shapepixel_indices = random.sample(range(x_size * y_size), num_pixels)for pixel_index in pixel_indices:x, y = divmod(pixel_index, y_size)band_list_1, band_list_2 = [], []for i in range(len(band1_merge)):band_data_1 = band1_merge[i]band_list_1.append(band_data_1[x, y])band_data_2 = band2_merge[i]band_list_2.append(band_data_2[x, y])plt.figure()plt.plot(range(len(band1_merge)), band_list_1, label="Band 1")plt.plot(range(len(band1_merge)), band_list_2, label="Band 2")plt.xlabel("Time")plt.ylabel("NDVI")plt.ylim(0, 1000)plt.title(f"Time Series for Pixel at ({x}, {y})")plt.legend()plt.savefig(os.path.join(pic_folder, str(x) + "_" + str(y)))plt.show()image_folder_path = "E:/02_Project/Result/test"
pic_folder_path = "E:/02_Project/TIFF/Plot"
num_pixels = 50
plot_time_series(image_folder_path, pic_folder_path, num_pixels)

  上述代码的具体含义如下。

  首先,我们导入了需要使用的库;其中,os用于处理文件路径和目录操作,random用于随机选择像素,matplotlib.pyplot则用于绘制图像。

  随后,我们定义函数load_image(image_path);这个函数接收一个影像文件路径image_path作为输入参数。随后,在函数内使用gdal库打开该影像文件,然后提取其第一个和第二个波段的数据,并分别存储在band1band2中。最后,函数返回这两个波段的数据。

  接下来,我们定义函数plot_time_series(image_folder, pic_folder, num_pixels);这个函数接收三个输入参数,分别为image_folderpic_foldernum_pixels。其中,image_folder为包含多个.tif格式的影像文件的文件夹路径,pic_folder是保存生成的时间序列图像的文件夹路径,而num_pixels则指定了随机选择的像素数量,用于绘制时间序列图——这个参数设置为几,我们最后就会得到几张结果图像。

  在这个函数的内部,我们通过os.listdir函数获取image_folder中所有以.tif结尾的影像文件,并将这些文件名存储在image_files列表中。然后,我们创建两个空列表band1_mergeband2_merge,用于存储所有影像文件的2个波段数据。接下来,我们遍历所有影像文件,逐个加载每个影像文件的全部波段数据,并将它们添加到对应的列表中。其次,使用random.sample函数从像素索引的范围中随机选择num_pixels个像素的索引,并保存在pixel_indices列表中。接下来,我们遍历并恢复pixel_indices中的每个像素索引,计算该像素在每个影像中的每个波段的时间序列数据,并存储在band_list_1band_list_2列表中。

  随后,我们即可绘制两个时间序列图,分别表示2个波段在不同影像日期上的数值。最后,我们将图像保存到指定的文件夹pic_folder中,命名规则为x_y,其中xy分别代表像素的横、纵坐标。

  执行上述代码,我们即可在指定的文件夹路径下看到我们生成的多张曲线图;如下图所示。

  其中,每1张图像都表示了我们2个波段在这段时间内的数值走势;如下图所示。

  至此,大功告成。

欢迎关注:疯狂学习GIS

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/11567.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LLM】浅析chatglm的sft+p-tuning v2

note GLM将针对不同类型下游任务的预训练目标统一为了自回归填空,结合了混合的注意力机制和新的二维位置编码。本文浅析sft,并基于GLM在广告描述数据集上进行sftp-tuning代码的数据流讲解 文章目录 note零、ChatGLM2模型一、Supervised fine-tuning1. 数…

C#时间轴曲线图形编辑器开发2-核心功能实现

目录 三、关键帧编辑 1、新建Winform工程 (1)界面布局 (2)全局变量 2、关键帧添加和删除 (1)鼠标在曲线上识别 (2)键盘按键按下捕捉 (3)关键帧添加、删…

Unity自定义后处理——用偏导数求图片颜色边缘

大家好,我是阿赵。   继续介绍屏幕后处理效果的做法。这次介绍一下用偏导数求图形边缘的技术。 一、原理介绍 先来看例子吧。   这个例子看起来好像是要给模型描边。之前其实也介绍过很多描边的方法,比如沿着法线方向放大模型,或者用Ndo…

Palo Alto Networks 智能网络安全保护任何地方的用户、应用和数据

Palo Alto Networks 不仅能够为数字企业提供当下所需的网络安全服务,还能为日后的工作打好安全基础,让企业无需在二者间权衡和纠结,这样的网络安全合作伙伴仅此一家。我们承诺将双管齐下,在保障数字企业的安全方面绝不妥协退让。下…

专题-【排序比较】

时间最好:直接和冒泡,n 堆排序和归并时间固定:nlog2n 空间:归并,n;快速,log2n 稳定:直冒归基

Sharding-JDBC分布式事务详解与实战

🚀 ShardingSphere 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜&…

K8s卷存储详解(二)

K8s卷存储详解(二) 持久卷持久卷(PV)持久卷申领(PVC)存储类(StorageClass)存储制备器(Provisioner)PV和PVC的生命周期持久卷的类型CSI 卷快照CSI 卷克隆 投射…

多租户的低代码平台,Saas开发平台:MateCloud

简介 MateCloud是一款基于Spring Cloud Alibaba的微服务架构。目前已经整合Spring Boot 2.7.0、 Spring Cloud 2021、Spring Cloud Alibaba 2021、Spring Security Oauth2、Feign、Dubbo、JetCache、RocketMQ等,支持多租户的低代码平台,Saas平台开发套件…

Elasticsearch-增删改查数据工作原理

集群 集群的基本概念: 集群:ES 集群由一个或多个 Elasticsearch 节点组成,每个节点配置相同的 cluster.name 即可加入集群,默认值为 “elasticsearch”。节点:一个 Elasticsearch 服务启动实例就是一个节点&#xff…

【Linux】线程同步条件变量

目录 1 线程同步的引入 2 条件变量&线程同步&竞争条件的概念 3 条件变量相关函数 初始化 销毁 等待条件满足 唤醒等待 4 demo代码——理解条件变量&线程同步 5 为什么 pthread_cond_wait 需要互斥量? 6 条件变量使用规范 1 线程同步的引入 例子生活化&…

【多任务编程-线程通信】

进程/线程通信的方式 某些应用程序中,进程/进程和线程/线程之间不可避免的进行通信,进行消息传递,数据共享等 同一进程的线程之间通信方式包括Windows中常用Event, Message等。 不同进程之间的通信可以利用Event, FileMapping(内存共享), W…

24考研数据结构-栈和队列的应用

目录 3.3.1栈在括号匹配中的应用流程图算法代码 3.3.2栈在表达式求值中的应用1. 中缀表达式 (需要界限符)2. 后缀表达式 (逆波兰表达式)中缀表达式转后缀表达式-手算重点:中缀表达式转后缀表达式-机算重点:后缀表达式的计算—机算 3.前缀表达式 (波兰表达…

杭电oj Simple Set Problem 双指针 尺取法 满注释版

👨‍🏫 题目地址 输入 3 2 1 6 3 -7 7 10 4 9 -5 -9 2 8 5 4 3 3 8 2 10 8 1 -7 3 1 6 10 1 1 9输出 1 15 0使用快读,避免使用 Arrays.fill() 按需初始化 避免卡常 🍑 思路 🍺 AC code import java.io.*; import ja…

机器学习李宏毅学习笔记39

文章目录 前言一、大模型的发展趋势二、KNN LM总结 前言 大模型大资料 大模型的顿悟时刻 一、大模型的发展趋势 随数据量增加,模型可以从量变达到质变,从某一刻开始突然学会东西。 当成为大模型时,分数会从0,0突然变成100,完成“…

【Matplotlib 绘制折线图】

使用 Matplotlib 绘制折线图 在数据可视化中,折线图是一种常见的图表类型,用于展示随着变量的变化,某个指标的趋势或关系。Python 的 Matplotlib 库为我们提供了方便易用的功能来绘制折线图。 绘制折线图 下面的代码展示了如何使用 Matplo…

基于Centos 7虚拟机的磁盘操作(添加磁盘、分区、格式分区、挂载)

目录 一、添加硬盘 二、查看新磁盘 三、磁盘分区 3.1新建分区 3.2 格式分区 3.3 挂载分区 3.4 永久挂载新分区 3.5 取消挂载分区 一、添加硬盘 1.在虚拟机处选择编辑虚拟机设置,然后选择添加 2.选择硬盘,然后选择下一步 3.默认即可,下一步…

【6】toLocaleString、toLocaleDateString、toLocaleTimeString等toLocale系列方法的使用及案例

一、介绍 在当今前端开发的领域里,快速、高效的项目构建工具以及使用最新技术栈是非常关键的。ViteVue3 组合为一体的项目实战示例专栏将带领你深入了解和掌握这一最新的前端开发工具和框架。 作为下一代前端构建工具,Vite 在开发中的启动速度和热重载…

C语言:动态内存管理

文章目录 一、动态内存函数1. malloc2. calloc3. realloc4. free 二、常见的错误1.malloc或calloc开辟的空间未检查2.越界访问3.对非malloc和calloc开辟的空间,用free释放4.对同一块动态内存多次释放5.用free释放动态内存的一部分 三、通讯录(动态版本改写)总结 一、…

uni-app:模态框的实现(弹窗实现)

效果图 代码 标签 <template><view><!-- 按钮用于触发模态框的显示 --><button click"showModal true">显示模态框</button><!-- 模态框组件 --><view class"modal" v-if"showModal"><view cla…

探索APP开发的新趋势:人工智能和大数据的力量

随着5G技术的不断发展&#xff0c;人工智能和大数据将会更加广泛的应用于我们生活和工作中&#xff0c;作为 APP开发公司&#xff0c;应该及时的对新技术进行研发&#xff0c;进而更好的为用户服务。目前 APP开发已经不是传统的软件开发了&#xff0c;而是向移动互联网转型&…