opencv-27 阈值处理 cv2.threshold()

怎么理解阈值处理?

阈值处理(Thresholding)是一种常用的图像处理技术,在机器学习和计算机视觉中经常被用于二值化图像或二分类任务。它基于设定一个阈值来将像素值进行分类,将像素值大于或小于阈值的部分分为两个不同的类别,从而得到二值化的图像或进行二分类预测。

在图像处理中的阈值处理:

图像二值化:将灰度图像转换为二值图像,其中像素值大于或等于阈值的部分设为一个值(通常为255),而小于阈值的部分设为另一个值(通常为0)。
自适应阈值处理:根据图像局部的灰度特点来自动调整不同区域的阈值,适应图像的不同部分。

在二分类任务中的阈值处理:

对于分类模型的输出概率:将模型输出的概率值与阈值进行比较,大于阈值的样本被划分为一个类别,小于阈值的样本被划分为另一个类别。
对于回归模型的输出:将模型输出的连续值与阈值进行比较,大于阈值的样本被划分为一个类别,小于阈值的样本被划分为另一个类别。

阈值处理的应用场景

  1. 图像二值化:将灰度图像转换为二值图像,常用于图像分割、边缘检测、形态学运算等图像处理任务。
  2. 自适应阈值处理:根据图像局部的灰度特点来自动调整不同区域的阈值,适应图像的不同部分。适用于光照不均匀或对比度变化较大的图像。
  3. 目标检测中的二分类:在目标检测任务中,通常需要将模型输出的概率值转换为二分类结果,判断目标是否存在。
  4. 人脸识别和人脸表情分析:在人脸图像处理中,可以通过阈值处理来检测和分析人脸的不同表情或情绪。
  5. 图像分割:将图像分为多个区域,常用于图像分析、目标提取和图像理解等任务。
  6. 文字识别和OCR(光学字符识别):在文字识别任务中,可以通过阈值处理将图像中的文字部分提取出来,便于后续识别过程。
  7. 遥感图像处理:在遥感图像中,阈值处理可以用于土地覆盖分类、植被检测等应用。
  8. 信号处理:在信号处理中,可以通过阈值处理来检测信号的起始点或结束点,以及滤除噪声。
  9. 异常检测:在异常检测任务中,可以使用阈值处理来识别异常点或异常事件。
  10. 机器学习中的二分类问题:在机器学习中,对于二分类任务,可以通过设定阈值来将模型输出的概率值转换为类别标签。

OpenCV 提供了函数 cv2.threshold()和函数 cv2.adaptiveThreshold(),用于实现阈值处理

threshold 函数

OpenCV 3.0 使用 cv2.threshold()函数进行阈值化处理,该函数的语法格式为:

retval, dst = cv2.threshold( src, thresh, maxval, type )

式中:
 retval 代表返回的阈值。
 dst 代表阈值分割结果图像,与原始图像具有相同的大小和类型。
 src 代表要进行阈值分割的图像,可以是多通道的,8 位或 32 位浮点型数值。
 thresh 代表要设定的阈值。
 maxval 代表当 type 参数为 THRESH_BINARY 或者 THRESH_BINARY_INV 类型时,需要设定的最大值。
 type 代表阈值分割的类型,具体类型值如表 6-1 所示。

在这里插入图片描述
上述公式相对抽象,可以将其可视化,具体如图 6-2 所示。

在这里插入图片描述

二值化阈值处理(cv2.THRESH_BINARY)

二值化阈值处理会将原始图像处理为仅有两个值的二值图像,其示意图如图 6-3 所示。其
针对像素点的处理方式为:

  • 对于灰度值大于阈值thresh的像素点,将其灰度值设定为最大值。
  • 对于灰度值小于或等于阈值thresh的像素点,将其灰度值设定为 0

在这里插入图片描述
如果使用表达式表示,其目标值的产生规则为:

在这里插入图片描述
式中,thresh是选定的特定阈值。

在 8 位图像中,最大值是 255。因此,在对 8 位灰度图像进行二值化时,如果将阈值设定
为 127,那么:

  • 所有大于 127 的像素点会被处理为 255。
  • 其余值会被处理为 0。

为了方便,在后续说明中,我们都以 8 位图像为例,即像素值最大值为 255。

实验:使用函数 cv2.threshold()对数组进行二值化阈值处理,观察处理结果

import cv2
import numpy as np
img=np.random.randint(0,256,size=[4,5],dtype=np.uint8)t,rst=cv2.threshold(img,127,255,cv2.THRESH_BINARY)
print("img=\n",img)
print("t=",t)
print("rst=\n",rst)

运行结果:

img=[[235  26  81   7 121][ 81  82  15  64  40][156 250 246  30 226][136 202 129 243  65]]
t= 127.0
rst=[[255   0   0   0   0][  0   0   0   0   0][255 255 255   0 255][255 255 255 255   0]]

实验2:使用函数 cv2.threshold()对图像进行二值化阈值处理

import cv2
img=cv2.imread("lena.png")
#将图像转换为灰度图像
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
t,rst=cv2.threshold(img,127,255,cv2.THRESH_BINARY)
cv2.imshow("img",img)
cv2.imshow("rst",rst)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:

在这里插入图片描述
左图是原始图像,右图是二值化阈值处理结果。

反二值化阈值处理(cv2.THRESH_BINARY_INV)

反二值化阈值处理的结果也是仅有两个值的二值图像,与二值化阈值处理的区别在于,二
者对像素值的处理方式不同。反二值化阈值处理针对像素点的处理方式为:
 对于灰度值大于阈值的像素点,将其值设定为 0。
 对于灰度值小于或等于阈值的像素点,将其值设定为 255。

反二值化阈值处理方式的示意图如图 6-5 所示。

在这里插入图片描述
如果使用表达式来表示,其目标值的产生规则为:

在这里插入图片描述
式中,thresh 是选定的阈值.

实验3:使用函数 cv2.threshold()对数组进行反二值化阈值处理

import cv2
import numpy as np
img=np.random.randint(0,256,size=[4,5],dtype=np.uint8)
t,rst=cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
print("img=\n",img)
print("t=",t)
print("rst=\n",rst)

运行程序,结果如下所示:

img=
[[ 56 64 150 48 41]
[108 165 112 213 110]
[122 244 10 213 46]
[247 30 90 0 26]]
t= 127.0
rst=
[[255 255 0 255 255]
[255 0 255 0 255]
[255 0 255 0 255]
[ 0 255 255 255 255]]

大于127的置为0,小于127的置为255

后面还有

截断阈值化处理(cv2.THRESH_TRUNC)
超阈值零处理(cv2.THRESH_TOZERO_INV)
低阈值零处理(cv2.THRESH_TOZERO)

感兴趣的同学自己去多实操几遍

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/11536.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从Web2到Web3:区块链技术的未来前景

随着互联网的发展,Web1.0、Web2.0 和 Web3.0 成为了人们口中津津乐道的话题。那么,这三种网络时代究竟有什么区别呢? Web1.0 是一个只读的时代,那个时候,用户只能浏览网页,无法进行互动和创作。Web2.0 则是…

php-golang-jsonrpc2.0 rpc-codec/jsonrpc2和tivoka/tivoka实践

golang代码: package main import ( "context" "net" "net/rpc" "github.com/powerman/rpc-codec/jsonrpc2" ) type App struct{} type Res struct { Code int json:"code" Msg string json:"msg&quo…

系列二、RocketMQ简介

一、概述 RocketMQ是一款阿里巴巴开源的消息中间件。2016年11月28日,阿里巴巴向Apache软件基金会捐赠RabbitMQ,成为Apache孵化项目。2017年9月25日,Apache宣布RocketMQ孵化成为Apache顶级项目(TLP),成为国内…

树莓派微型web服务器——阶段设计报告

文章目录 1. 需求分析1.1 功能需求1.1.1 访问需求1.1.2 自定义域名需求1.1.3 下载公共文件需求1.1.4 用户体验需求 1.2 技术需求1.2.1 操作系统指令1.2.2 技术栈1.2.3 内网穿透 1.3 性能需求1.3.1 处理能力1.3.2 内存1.3.3 存储空间 2. 可行性分析2.1 硬件方面2.2 软件方面 3. …

[Tools: Camera Conventions] NeRF中的相机矩阵估计

参考:NeRF代码解读-相机参数与坐标系变换 - 知乎 在NeRF中,一个重要的步骤是确定射线(rays)的初始点和方向。根据射线的初始点和方向,和设定射线深度和采样点数量,可以估计该射线成像的像素值。估计得到的…

flutter:animate_do(flutter中的Animate.css)

简介 做过web开发的应该大部分人都知道Animate.css,它为开发者提供了一系列预定义的动画效果,可以通过简单的CSS类来实现各种动画效果。而animate_do 相当于flutter中的Animate.css,它提供了很多定义好的动画效果 基本使用 官方地址 https://pub-web.…

如何启用路由器dhcp?快解析如何内网穿透?

一、什么是DHCP? 动态主机设置协议(DHCP)是一种使网络管理员能够集中管理和自动分配 IP 网络地址的通信协议。在网络中,每个联网设备都需要分配独有的 IP 地址。并当有新计算机移到网络中的其它位置时,能自动收到新的…

数据结构之常见排序算法

文章目录 1.排序概念2.10种排序比较3.排序算法3.1直接插入排序(元素越有序,越高效)3.2希尔排序序( 缩小增量排序 )3.3直接选择排序3.5堆排序3.6冒泡排序3.8快速排序 递归实现(无序使用最好)3.8.1挖坑法 (建…

我的第一个后端项目(环境搭建,Springboot项目,运行,接口验证)

一. 安装Java开发工具包(JDK): 访问Java Software | OracleOracle官方网站,下载适合你操作系统的最新版本的JDK。安装JDK并设置好JAVA_HOME环境变量。 二. 安装集成开发环境(IDE): 推荐使用In…

全方位对比 Postgres 和 MongoDB (2023 版)

本文为「数据库全方位对比系列」第二篇,该系列的首部作品为「全方位对比 Postgres 和 MySQL (2023 版)」 为何对比 Postgres 和 MongoDB 根据 2023 年 Stack Overflow 调研,Postgres 已经成为最受欢迎和渴望的数据库了。 MongoDB 曾连续 4 年 (2017 - …

【高级数据结构】树状数组

目录 树状数组1 (单点修改,区间查询) 树状数组1 (单点修改,区间查询) 洛谷:树状数组1https://www.luogu.com.cn/problem/P3374 题目描述 如题,已知一个数列,你需要进行…

MySQL案例——多表查询以及嵌套查询

系列文章目录 MySQL笔记——表的修改查询相关的命令操作 MySQL笔记——MySQL数据库介绍以及在Linux里面安装MySQL数据库,对MySQL数据库的简单操作,MySQL的外接应用程序使用说明 文章目录 系列文章目录 前言 一 创建数据库 1.1 创建一个部门表 1.…

C++网络编程 TCP套接字基础知识,利用TCP套接字实现客户端-服务端通信

1. TCP 套接字编程流程 1.1 概念 流式套接字编程针对TCP协议通信,即是面向对象的通信,分为服务端和客户端两部分。 1.2 服务端编程流程: 1)加载套接字库(使用函数WSAStartup()),创建套接字&…

【Python机器学习】实验04(2) 机器学习应用实践--手动调参

文章目录 机器学习应用实践1.1 准备数据此处进行的调整为:要所有数据进行拆分 1.2 定义假设函数Sigmoid 函数 1.3 定义代价函数1.4 定义梯度下降算法gradient descent(梯度下降) 此处进行的调整为:采用train_x, train_y进行训练 1.5 绘制决策边界1.6 计算…

Spring AOP 中,切点有多少种定义方式?

在 Spring AOP 中,我们最常用的切点定义方式主要是两种: 使用 execution 进行无侵入拦截。使用注解进行拦截。 这应该是是小伙伴们日常工作中使用最多的两种切点定义方式了。但是除了这两种还有没有其他的呢?今天松哥就来和大家聊一聊这个话…

Linux-Shell

1.什么是Bash shell(壳) Bash Shell是一个命令解释器,它在操作系统的最外层,负责用户程序与内核进行交互操作的一种接口,将用户输入的命令翻译给操作系统,并将处理后的结果输出至屏幕。 通过xshell连接,就是打开了一…

uniAPP 视频图片预览组件

效果图 思路&#xff1a;处理文件列表&#xff0c;根据文件类型归类 已兼容 H5 ios 设备&#xff0c;测试已通过 浙政钉&#xff0c;微信小程序 视频资源因为&#xff0c;没有预览图&#xff0c;用灰色图层加播放按钮代替 <template><!--视频图片预览组件 -->&l…

《面试1v1》Kafka与传统消息系统区别

&#x1f345; 作者简介&#xff1a;王哥&#xff0c;CSDN2022博客总榜Top100&#x1f3c6;、博客专家&#x1f4aa; &#x1f345; 技术交流&#xff1a;定期更新Java硬核干货&#xff0c;不定期送书活动 &#x1f345; 王哥多年工作总结&#xff1a;Java学习路线总结&#xf…

React AntDesign写一个导出数据的提示语 上面有跳转的路径,或者点击知道了,关闭该弹层

效果如下&#xff1a; 代码如下&#xff1a; ForwardDataCenterModal(_blank);export const ForwardDataCenterModal (target?: string) > {let contentBefore React.createElement(span, null, 数据正在处理中&#xff0c;请稍后前往);let contentAfter React.creat…

lightGBM实例——特征筛选和评分卡模型构建

数据还是采用这个例子里的数据&#xff0c;具体背景也同上。 添模型构建——使用逻辑回归构建模型&#xff0c;lightGBM进行特征筛选 lightGBM模型介绍请看这个链接&#xff1a;集成学习——Boosting算法&#xff1a;Adaboost、GBDT、XGBOOST和lightGBM的简要原理和区别 具体代…