Java多线程编程

文章目录

  • Java多线程编程
    • 线程概念
    • 线程常用方法
    • 线程创建
    • 线程优先级
    • 终止线程
    • 等待线程
    • 线程状态
    • 线程安全
    • synchronized
    • volatile
    • wait和notify方法
    • ThreadLocal的使用
    • 标准库线程安全类

Java多线程编程

线程概念

线程概念:

一个线程就是一个 “执行流”. 每个线程之间都可以按照顺讯执行自己的代码. 多个线程之间 “同时” 执行
着多份代码

线程作用:

在多核CPU情况下,充分利用CPU资源;对于需要等待IO的任务,利用CPU资源

在创建,销毁,调度上相比进程更加轻量

进程和线程的区别:

进程是包含线程的,每个进程至少有一个线程存在,即主线程

进程和进程之间不共享内存空间,同一个进程的线程之间共享同一个内存空间

进程是系统分配资源的最小单位,线程是系统调度的最小单位

线程常用方法

Thread 类是 JVM 用来管理线程的一个类,换句话说,每个线程都有一个唯一的 Thread 对象与之关

构造方法:

方法说明
Thread()创建线程对象
Thread(Runnable target)使用 Runnable 对象创建线程对象
Thread(String name)创建线程对象,并命名
Thread(Runnable target, String name)使用 Runnable 对象创建线程对象,并命名
Thread(ThreadGroup group, Runnable target)线程可以被用来分组管理,分好的组即为线程组,这 个目前我们了解即可

属性方法:

属性获取方法
IDgetId()
名称getName()
状态getState()
优先级getPriority()
是否后台线程isDaemon()
是否存活isAlive()
是否被中断isInterrupted()

注:优先级高的线程理论上来说更容易被调度到;JVM会在一个进程的所有非后台线程结束后,才会结束运行

启动线程:

t.start();//调用 start 方法, 才真的在操作系统的底层创建出一个线程

获取当前线程引用:

方法说明
public static Thread currentThread();返回当前线程对象的引用

休眠当前线程:

方法说明
public static void sleep(long millis) throws InterruptedException休眠当前线程 millis 毫秒
public static void sleep(long millis, int nanos) throws InterruptedException可以更高精度的休眠

线程创建

继承Thread类:

public class ThreadDemo extends Thread {@Overridepublic void run() {System.out.println("hello world");}public static void main(String[] args) {ThreadDemo t = new ThreadDemo();t.start();//创建线程+调用run()System.out.println("nihao");}
}

实现Runnable接口:

public class Thread2 implements Runnable{@Overridepublic void run() {System.out.println("hello world");}public static void main(String[] args) {Thread t = new Thread(new Thread2());t.start();//创建线程+调用run()System.out.println("nihao");}
}

匿名内部类Thread子类:

    public static void main(String[] args) {Thread t = new Thread(){@Overridepublic void run() {System.out.println("hello world");}};t.start();System.out.println("nihao");}

匿名内部类Runnable子类:

    public static void main(String[] args) {Thread t = new Thread(new Runnable() {@Overridepublic void run() {System.out.println("hello world");}});t.start();System.out.println("nihao");}

lambda表示式创建Runnable子类:

    public static void main(String[] args) {Thread t = new Thread(() -> {System.out.println("hello world");});t.start();System.out.println("nihao");}

线程优先级

Java采用的是抢占式调度方式,优先级越高的线程,优先使用CPU资源

我们希望CPU花费更多的时间去处理更重要的任务,而不太重要的任务,则可以先让出一部分资源。

线程的优先级一般分为以下三种:

  • MIN_PRIORITY 最低优先级
  • MAX_PRIORITY 最高优先级
  • NOM_PRIORITY 常规优先级
public static void main(String[] args) {Thread t = new Thread(() -> {System.out.println("线程开始运行!");});t.start();t.setPriority(Thread.MIN_PRIORITY);  //通过使用setPriority方法来设定优先级
}

终止线程

  1. 通过共享的标记来进行沟通
public class ThreadDemo {public static volatile boolean isQuit = false;//volatile保证内存可见性public static void main(String[] args) throws InterruptedException {Thread thread = new Thread(() -> {while (!isQuit) {//自动捕获‘final’属性的变量System.out.println(Thread.currentThread().getName()+ ": hello worold!");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}}System.out.println(Thread.currentThread().getName()+ ": out of while");}, "李四");System.out.println(Thread.currentThread().getName()+ ": start。");thread.start();Thread.sleep(10 * 1000);System.out.println(Thread.currentThread().getName()+ ": down!");isQuit = true;}
}
  1. 调用 interrupt() 方法来通知

使用 Thread.interrupted() 或者 Thread.currentThread().isInterrupted() 代替自定义标志位

方法说明
public void interrupt()中断对象关联的线程,如果线程正在阻塞,则以异常方式通知, 否则设置标志位
public static boolean interrupted()判断当前线程的中断标志位是否设置,调用后清除标志位
public boolean isInterrupted()判断对象关联的线程的标志位是否设置,调用后不清除标志位
public class test1 {static class MyRunnable implements Runnable {@Overridepublic void run() {while(!Thread.interrupted()){System.out.println("working---");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();//选择处理方式break;}}}}public static void main(String[] args) {MyRunnable mr = new MyRunnable();Thread t = new Thread(mr);t.start();try {Thread.sleep(3000);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("thread interrupted");t.interrupt();}
}

thread 收到通知的方式有两种:

  1. 如果线程因为调用 wait/join/sleep 等方法而阻塞挂起,则以 InterruptedException 异常的形式通
    知,清除中断标志;当出现 InterruptedException 的时候, 要不要结束线程取决于 catch 中代码的写法. 可以选择忽略这个异常, 也可以跳出循环结束线程
  2. 如果线程正在工作,则只是内部的一个中断标志被设置;Thread.interrupted() 判断当前线程的中断标志被设置,清除中断标志Thread.currentThread().isInterrupted() 判断指定线程的中断标志被设置,不清除中断标志

等待线程

有时需要等待一个线程完成它的工作后,才能进行自己的下一步工作。

方法说明
public void join()等待线程结束
public void join(long millis)等待线程结束,最多等 millis 毫秒
public void join(long millis, int nanos)同理,但可以更高精度
public class test2 {public static void main(String[] args) throws InterruptedException {Runnable r = () -> {for (int i = 0; i < 10; i++) {System.out.println(Thread.currentThread().getName()+" working...");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}}System.out.println(Thread.currentThread().getName() + "work finish");};Thread t1 = new Thread(r, "zhangsan");Thread t2 = new Thread(r, "lisi");t1.start();t2.start();t1.join();t2.join();}
}

线程状态

线程的状态是一个枚举类型 Thread.State

public class ThreadState {public static void main(String[] args) {for (Thread.State state : Thread.State.values()) {System.out.println(state);}}
}
NEW: 安排了工作, 还未开始行动
RUNNABLE: 可工作的. 又可以分成正在工作中和即将开始工作.
BLOCKED: 这几个都表示排队等着其他事情,被锁给阻塞住了
WAITING: 这几个都表示排队等着其他事情,被wait()给阻塞住了
TIMED_WAITING: 这几个都表示排队等着其他事情,被sleep()给阻塞住了
TERMINATED: 工作完成了

状态转移图:

image-20231009211827410

BLOCKED 表示等待获取锁

WAITING 和 TIMED_WAITING 表示等待其他线程发来通知

TIMED_WAITING 线程在等待唤醒,但设置了时限

WAITING 线程在无限等待唤醒

相关函数:

yield();//让出cpu,yield 不改变线程的状态, 但是会重新去排队
isAlive();//判断线程的存活状态

线程安全

多线程环境下代码运行的结果是符合我们预期的,即在单线程环境应该的结果,则说这个程序是线
程安全的。

修改共享数据:

多个线程针对 counter.count 变量进行修改,此时这个 counter.count 是一个多个线程都能访问到的 “共享数据”

原子性:

原子性表示一个资源在同一时间段下只有一个访问资源者进行操作

有时也把这个现象叫做同步互斥,表示操作是互相排斥的

一条 java 语句不一定是原子的,因为语句不一定包含的可能不只是一条指令

数据自增1底层操作步骤:

  1. 从内存把数据读到 CPU

  2. 进行数据更新

  3. 把数据写回到 CPU

synchronized

synchronized 是一个互斥锁, 某个线程执行到某个对象的 synchronized 中时, 其他线程如果也执行到
同一个对象 synchronized 就会阻塞等待。

synchronized用的锁是存在Java对象头里的,synchronized的底层是使用操作系统的mutex lock实现的。

synchronized上锁是需要传入对象的,当对象不同时,获取到的是不同的锁,因此并不能保证自增操作的原子性。

public class SynchronizedDemo {public void method() {synchronized (this) {//锁当前对象}}
}

synchronized关键字也可以作用于方法上,调用此方法时也会获取锁:

private static int value = 0;private static synchronized void add(){value++;
}

如果是静态方法,就是使用的类锁,而如果是普通成员方法,就是使用的对象锁。通过灵活的使用synchronized就能很好地解决线程安全的问题。

synchronized 的工作过程:

  1. 获得互斥锁

  2. 从主内存拷贝变量的最新副本到工作的内存

  3. 执行代码

  4. 将更改后的共享变量的值刷新到主内存

  5. 释放互斥锁

synchronized 同步块对同一条线程来说是可重入的,不会出现自己把自己锁死的问题

在可重入锁的内部, 包含了 “线程持有者” 和 “计数器” 两个信息:

如果某个线程加锁的时候, 发现锁已经被人占用, 但是恰好占用的正是自己, 那么仍然可以继续获取
到锁, 并让计数器自增

解锁的时候计数器递减为 0 的时候, 才真正释放锁. (才能被别的线程获取到)

volatile

volatile 修饰的变量, 能够保证 “内存可见性”

image-20231019211021809

直接访问工作内存(实际是 CPU 的寄存器或者 CPU 的缓存), 速度非常快, 但是可能出现数据不一致的情况。变量加上 volatile 关键字修饰, 强制读写内存,速度是慢了, 但是数据变的更准确了。

代码在写入 volatile 修饰的变量的时候:

  1. 改变线程工作内存中volatile变量副本的值
  2. 将改变后的副本的值从工作内存刷新到主内存

代码在读取 volatile 修饰的变量的时候:

  1. 从主内存中读取volatile变量的最新值到线程的工作内存中
  2. 从工作内存中读取volatile变量的副本

wait和notify方法

wait()notify()以及notifyAll()是需要配合synchronized来使用的(实际上锁就是依附于对象存在的,每个对象都应该有针对于锁的一些操作)。

对象的wait()方法会暂时使得此线程进入等待状态,同时会释放当前代码块持有的锁,这时其他线程可以获取到此对象的锁。

当其他线程调用对象的notify()方法后,会唤醒刚才变成等待状态的线程(必须是在持有锁(同步代码块内部)的情况下使用,否则会抛出异常)。

notifyAll其实和notify一样,也是用于唤醒,但是前者是唤醒所有调用wait()后处于等待的线程,而后者是看运气随机选择一个。

public static void main(String[] args) throws InterruptedException {Object o1 = new Object();Thread t1 = new Thread(() -> {synchronized (o1){try {System.out.println("开始等待");o1.wait();     //进入等待状态并释放锁System.out.println("等待结束!");} catch (InterruptedException e) {e.printStackTrace();}}});Thread t2 = new Thread(() -> {synchronized (o1){System.out.println("开始唤醒!");o1.notify();     //唤醒处于等待状态的线程for (int i = 0; i < 50; i++) {System.out.println(i);   }//唤醒后依然需要等待这里的锁释放之前等待的线程才能继续}});t1.start();Thread.sleep(1000);t2.start();
}

ThreadLocal的使用

image-20231019211021809

每个线程都有一个自己的工作内存,可以使用ThreadLocal类,来创建工作内存中的变量,它将我们的变量值存储在内部(只能存储一个变量),不同的线程访问到ThreadLocal对象时,都只能获取到当前线程所属的变量。

public static void main(String[] args) throws InterruptedException {ThreadLocal<String> local = new ThreadLocal<>();  //注意这是一个泛型类,存储类型为我们要存放的变量类型Thread t1 = new Thread(() -> {local.set("lbwnb");   //将变量的值给予ThreadLocalSystem.out.println("变量值已设定!");System.out.println(local.get());   //尝试获取ThreadLocal中存放的变量});Thread t2 = new Thread(() -> {System.out.println(local.get());   //尝试获取ThreadLocal中存放的变量});t1.start();Thread.sleep(3000);    //间隔三秒t2.start();
}

线程中创建的子线程,无法获得父线程工作内存中的变量,使用InheritableThreadLocal来解决:

public static void main(String[] args) {ThreadLocal<String> local = new InheritableThreadLocal<>();Thread t = new Thread(() -> {local.set("lbwnb");new Thread(() -> {System.out.println(local.get());}).start();});t.start();
}

在InheritableThreadLocal存放的内容,会自动向子线程传递。

标准库线程安全类

Java 标准库中很多都是线程不安全的. 这些类可能会涉及到多线程修改共享数据, 又没有任何加锁措施:

  1. ArrayList
  2. LinkedList
  3. HashMap
  4. TreeMap
  5. HashSet
  6. TreeSet
  7. StringBuilder

使用了一些锁机制来保证线程安全的类:

  1. Vector (不推荐使用)
  2. HashTable (不推荐使用)
  3. ConcurrentHashMap
  4. StringBuffer

不涉及 “修改”, 仍然是线程安全的:

  1. String
    (() -> {
    local.set(“lbwnb”);
    new Thread(() -> {
    System.out.println(local.get());
    }).start();
    });
    t.start();
    }

在InheritableThreadLocal存放的内容,会自动向子线程传递。## 标准库线程安全类  Java 标准库中很多都是线程不安全的. 这些类可能会涉及到多线程修改共享数据, 又没有任何加锁措施:1. ArrayList
2. LinkedList
3. HashMap
4. TreeMap
5. HashSet
6. TreeSet
7. StringBuilder  使用了一些锁机制来保证线程安全的类:1. Vector (不推荐使用)
2. HashTable (不推荐使用)
3. ConcurrentHashMap
4. StringBuffer  不涉及 "修改", 仍然是线程安全的:1. String  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/113306.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Springboot-案例 增删改查二

准备 前端程序、后端工程&#xff08;web/mybatis/mysql/lombok&#xff09;、数据库 开发规范 GET&#xff1a;查询 POST&#xff1a;新增 PUT&#xff1a;修改 DELETE&#xff1a;删除 Result.java Data NoArgsConstructor AllArgsConstructor public class Result {pri…

偶数科技发布实时湖仓数据平台Skylab 5.3版本

近日&#xff0c; 偶数发布了最新的实时湖仓数据平台 Skylab 5.3 版本。Skylab包含七大产品&#xff0c;分别为云原生分布式数据库 OushuDB、数据分析与应用平台 Kepler、数据资产管理平台 Orbit、自动化机器学习平台 LittleBoy、数据工厂 Wasp、数据开发与调度平台 Flow、系统…

鸿蒙HarmonyOS应用开发:扫描仪文件扫描

华为鸿蒙HarmonyOS已经发展到4.0&#xff0c;使用ArkTS作为开发语言。这篇文章结合Dynamsoft Service开发一个简单的鸿蒙应用&#xff0c;用来获取办公室里连接PC的扫描仪(惠普&#xff0c;富士通&#xff0c;爱普生&#xff0c;等)&#xff0c;把文档扫描到手机里。 准备工作…

DevExpress WPF Pivot Grid组件,可轻松实现多维数据分析!(二)

在上文中&#xff08;点击这里回顾>>&#xff09;我们主要为大家介绍了DevExpress WPF Pivot Grid组件的超快速枢轴分析功能、Microsoft分析服务等&#xff0c;本文将继续介绍图表透视数据的处理、MVVM支持等。欢迎持续关注我们&#xff0c;探索更多新功能哦~ P.S&#…

【异步爬虫】requests和aiohttp中代理IP的使用

前言 在进行爬虫开发时&#xff0c;我们常常需要使用代理IP来隐藏自己的真实IP地址&#xff0c;以避免被一些网站限制或封禁。requests和aiohttp是两个非常常用的工具&#xff0c;本文将分别介绍如何在它们中使用代理IP&#xff0c;希望可以帮助大家更好地进行异步爬虫开发。 …

电容屏物体识别手工制作

电容屏识别物体效果2 电容屏识别物体效果1 电容屏识别物体效果3 电容屏识别物体效果4 电容识别物理效果5 我们感兴趣的是找到让我们的平面屏幕与物理三维物体和表面交互的方法。 触摸屏无处不在&#xff0c;成千上万的应用程序中有多种设备和屏幕格式&#xff0c;但我们只找到…

STM32的hex文件格式的分析

前言 最近研究Bootloader&#xff0c;通过串口实现STM32程序的更新。需要学习了解STM32的Hex文件格式。在这进行一下总结。 HEX文件格式 我们通过文本形式打开hex文件&#xff0c;可以看到&#xff1a; 这一行就是一条指令数据&#xff0c;这里对数据帧格式进行说明&#xff…

elementui select组件下拉框底部增加自定义按钮

elementui select组件下拉框底部增加自定义按钮 el-select组件的visible-change 事件&#xff08;下拉框出现/隐藏时触发&#xff09; <el-selectref"select":value"value"placeholder"请选择"visible-change"visibleChange">&…

Kotlin笔记(六):泛型的高级特性

前面学习了Kotlin中的泛型的基本用法,跟Java中的泛型大致相同&#xff0c;Kotlin在泛型方面还提供了不少特有的功能&#xff0c;掌握了这些功能&#xff0c;你将可以更好玩转Kotlin&#xff0c;同时还能实现一些不可思议的语法特性&#xff0c;那么我们自然不能错过这部分内容了…

2023-10-19 LeetCode每日一题(同积元组)

2023-10-19每日一题 一、题目编号 1726. 同积元组二、题目链接 点击跳转到题目位置 三、题目描述 给你一个由 不同 正整数组成的数组 nums &#xff0c;请你返回满足 a * b c * d 的元组 (a, b, c, d) 的数量。其中 a、b、c 和 d 都是 nums 中的元素&#xff0c;且 a ! b…

LiveGBS流媒体平台GB/T28181常见问题-安全控制HTTP接口鉴权勾选流地址鉴权后401Unauthorized如何播放调用接口

LiveGBS流媒体平台GB/T28181常见问题-安全控制HTTP接口鉴权勾选流地址鉴权后401 Unauthorized如何播放调用接口&#xff1f; 1、安全控制1.1、HTTP接口鉴权1.2、流地址鉴权 2、401 Unauthorized2.1、携带token调用接口2.1.1、获取鉴权token2.1.2、调用其它接口2.1.2.1、携带 Co…

DNS压测工具-dnsperf的安装和使用(centos)

系统调优 系统调优脚本&#xff0c;保存为sh文件&#xff0c;chmod提权后执行即可 #!/bin/sh #系统全局允许分配的最大文件句柄数&#xff1a; sysctl -w fs.file-max2097152 sysctl -w fs.nr_open2097152 echo 2097152 > /proc/sys/fs/nr_open #允许当前会话 / 进程打开文…

【论文笔记】Far3D: Expanding the Horizon for Surround-view 3D Object Detection

原文链接&#xff1a;https://arxiv.org/pdf/2308.09616.pdf 1. 引言 目前的环视图图像3D目标检测方法分为基于密集BEV的方法和基于稀疏查询的方法。前者需要较高的计算量&#xff0c;难以扩展到长距离检测。后者全局固定的查询不能适应动态场景&#xff0c;通常会丢失远距离…

竞赛选题 深度学习YOLO抽烟行为检测 - python opencv

文章目录 1 前言1 课题背景2 实现效果3 Yolov5算法3.1 简介3.2 相关技术 4 数据集处理及实验5 部分核心代码6 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于深度学习YOLO抽烟行为检测 该项目较为新颖&#xff0c;适合作为竞赛课…

LeetCode13——罗马数字转整数

解题思想&#xff1a; 前后指针 左边比右边小 做减法 左边比右边大 做加法 最后一个数字直接加。 package keepcoding.leetcode.leetcode13;public class Result02 {public static void main(String[] args) {int result romanToInt("XIV");System.out.println(re…

最近又火了!吴恩达《生成式 AI》重磅发布!

吴恩达教授可能是许多人接触 AI 的启蒙课导师吧&#xff0c;在过去的十多年中&#xff0c;他的《Machine Learning》课程已经对数百万的学习者产生了积极影响。 而随着 ChatGPT 的推出&#xff0c;大模型和各类生成式人工智能&#xff08;GenAI&#xff09;技术在行业内外备受…

数据结构:排序

文章目录 1. 预备知识2. 插入排序2.1 直接插入排序2.2 折半插入排序 3. 希尔排序4. 交换排序4.1 冒泡排序4.2 快速排序4.2.1 选取基准值4.2.2 分割策略4.2.3 小数组4.2.4 基于Hoare版本 最后优化 递归版本 快速排序4.2.5 快速排序的非递归版本4.2.6 快速排序的分析 5. 选择排序…

[云原生1.]Docker数据管理与Cgroups资源控制管理

文章目录 1. Docker的数据管理1.1 数据卷1.1.1 示例 1.2 数据卷容器 2. 容器互联3. Cgroups资源控制管理3.1 简介3.2 cgroups的主要功能3.3 cpu时间片的简单介绍3.4 对CPU使用的限制3.4.1 对CPU使用的限制&#xff08;基于单个容器&#xff09;3.4.2 对CPU使用的限制&#xff0…

Linux CentOS 8(网卡的配置与管理)

Linux CentOS 8&#xff08;网卡的配置与管理&#xff09; 目录 一、项目介绍二、命令行三、配置文件四、图形画界面的网卡IP配置4.1 方法一4.2 方法二 一、项目介绍 Linux服务器的网络配置是Linux系统管理的底层建筑&#xff0c;没有网络配置&#xff0c;服务器之间就不能相互…

个微多账号聚合聊天管理如何实现?

在日常工作中&#xff0c;我经常遇到以下问题&#xff1a; 1. 微信号众多&#xff0c;需要频繁切换设备和账号&#xff0c;导致工作效率低下。 2. 无法及时回复客户消息&#xff0c;客户体验不尽如人意。 3. 难以随时掌握员工与客户的沟通情况&#xff0c;导致员工沟通质量难…