分块
分块的思想和珂朵莉树很类似,就是把原序列分成若干个块,对块进行操作的奇妙思想。复杂度通常带根号。分块的块长也有讲究,通常对于大小为 n n n 的数组,取距离 n \sqrt n n 最近的 2 2 2 的幂数或直接取 n \sqrt n n 即可,如果 TLE 了可以考虑把块长乘 2 2 2 或除以 2 2 2。
数列分块
最简单的分块。基本上分两步走,对于一个操作的区间 [ l , r ] [l,r] [l,r],如果刚好在某个块区间内,直接暴力修改 [ l , r ] [l,r] [l,r] 的值;如果横跨多个区间,先处理整块,然后处理边角料。
常用操作如下:
-
区间加法、单点查询
最简单的数列分块操作,具体详见代码:
#include <bits/stdc++.h> using namespace std; #define int long longconst int maxn=5e4+5; int n,opt,ll,rr,cc,len,a[maxn],id[maxn],tag[maxn];void add(int l,int r,int c) {int sid=id[l],eid=id[r];if(sid==eid)for(int i=l;i<=r;i++)a[i]+=c;else{for(int i=l;id[i]==sid;i++) a[i]+=c;for(int i=sid+1;i<eid;i++) tag[i]+=c;for(int i=r;id[i]==eid;i--) a[i]+=c;} }signed main() {cin>>n;len=sqrt(n);for(int i=1;i<=n;i++) cin>>a[i],id[i]=(i-1)/len+1;for(int i=1;i<=n;i++){cin>>opt>>ll>>rr>>cc;if(!opt) add(ll,rr,cc);else cout<<a[rr]+tag[id[rr]]<<endl;}return 0; }
-
区间加法、区间求和
块长同样是 n \sqrt n n,由均值不等式可知此时单词操作的时间复杂度最优,为 O ( n ) O(\sqrt n) O(n)。预处理每一个块的区间和 s s s。
对于区间 [ l , r ] [l,r] [l,r] 的查询操作,考虑几种情况:
- 若 l l l 和 r r r 在同一个块内,暴力统计,最坏时间复杂度为 O ( n ) O(\sqrt n) O(n);
- 若 l l l 和 r r r 不在同一个块内,暴力统计不完整的块,直接累加完整的块的区间和,最坏时间复杂度为 O ( n ) O(\sqrt n) O(n)。
对于区间 [ l , r ] [l,r] [l,r] 的加法操作,同样按照上面的思考方式:
- 若 l l l 和 r r r 在同一个块内,暴力修改区间即可,最坏时间复杂度为 O ( n ) O(\sqrt n) O(n);
- 若 l l l 和 r r r 不在同一个块内,暴力修改不完整的块同时更新 s s s,直接修改完整块的 s s s,最坏时间复杂度为 O ( n ) O(\sqrt n) O(n)。
代码如下:
#include <bits/stdc++.h> using namespace std; #define int long longconst int maxn=50005; int a[maxn],id[maxn],tag[maxn]/*区间直接打标记*/,c,s[maxn],len;void add(int l,int r,int v) {int sid=id[l],eid=id[r];//start-id,end-idif(sid==eid) for(int i=l;i<=r;i++) a[i]+=v,s[sid]+=v;else{for(int i=l;id[i]==sid;i++) a[i]+=v,s[sid]+=v;for(int i=r;id[i]==eid;i--) a[i]+=v,s[eid]+=v;for(int i=sid+1;i<eid;i++) tag[i]+=v,s[i]+=len*v;} }int query(int l,int r,int mod) {int sid=id[l],eid=id[r],ans=0;if(sid==eid) {for(int i=l;i<=r;i++) ans=(ans+a[i]+tag[sid])%mod;return ans;}else{for(int i=l;id[i]==sid;i++) ans=(ans+a[i]+tag[sid])%mod;for(int i=r;id[i]==eid;i--) ans=(ans+a[i]+tag[eid])%mod;for(int i=sid+1;i<eid;i++) ans=(ans+s[i])%mod;return ans;} }signed main() {int n;cin>>n;len=sqrt(n);for(int i=1;i<=n;i++) cin>>a[i],id[i]=(i-1)/len+1,s[id[i]]+=a[i];while(n--){int opt,l,r;cin>>opt>>l>>r>>c;if(!opt) add(l,r,c);else cout<<query(l,r,c+1)<<endl;}return 0; }