聊聊Android线程优化这件事

一、背景

在日常开发APP的过程中,难免需要使用第二方库和第三方库来帮助开发者快速实现一些功能,提高开发效率。但是,这些库也可能会给线程带来一定的压力,主要表现在以下几个方面:

  • 线程数量增多:一些库可能会在后台启动一些线程来执行任务,这样会增加系统中线程的数量,从而导致系统资源的浪费。
  • 线程竞争:一些库可能会在同一时间启动多个线程来执行任务,这样会导致线程之间的竞争,从而影响程序的执行效率。
  • 线程阻塞:一些库可能会在执行任务时阻塞主线程,从而导致程序的卡顿和响应速度变慢。

二、整体思路

为了解决使用第二方库和第三方库代理的线程问题,我选择用下面的思路来进行线程优化:

  1. 线程检测,评估优化空间。
  2. 线程统计,收集优化范围。
  3. 线程和线程池优化,线程数收敛。
  4. 线程栈裁剪,减少线程内存。

三、具体方案

1. 线程检测

最常见的几种获取线程信息的方式如下

为了有完整的线程统计,而且能实时了解运行过程中线程数的变化,那我们就选择了读取伪文件系统里面线程信息的方式。

/*** 获取所有线程信息*/
private fun getThreadInfoList(): List<ThreadInfo>? {//获取伪文件所有的线程信息文件val file = File("/proc/self/task")...//遍历task文件目录下for (threadDir in listFile) {//读取每个目录下的status文件获取单个线程信息val statusFile = File(threadDir, "status")if (statusFile.exists()) {val threadInfo = ThreadInfo()try {BufferedReader(InputStreamReader(FileInputStream(statusFile))).use { reader ->var line: StringhitFlag = 0while (reader.readLine().also { line = it } != null) {if (hitFlag > 2) {break}//解析线程名if (line.startsWith("Name")) {val name =line.substring("Name".length + 1).trim { it <= ' ' }threadInfo.name = namehitFlag++continue}//解析线程Pidif (line.startsWith("Pid")) {val pid =line.substring("Pid".length + 1).trim { it <= ' ' }threadInfo.id = pidhitFlag++continue}//解析线程状态if (line.startsWith("State")) {...threadInfo.status = statehitFlag++}}}} catch (e: Exception) {Log.e(LOG_TAG, e.toString())}threadInfoList.add(threadInfo)}}return threadInfoList
}

最后只需要在APP启动后就开启轮询任务:1,获取伪文件。2,写入数据库。3,更新视图展示。

统计了运行时创建的线程、可用的线程、正在运行的线程。

理想的情况就是可用的线程数应该和正在运行的线程数尽量接近,实际发现差异巨大,所以优化的空间还是蛮值得期待的。

2. 线程统计

了解创建线程和线程池的字节码

如何扫描到创建的线程和线程池

通过插桩的方式,来查找创建线程池和线程的类名,并把这些类名统一输出到一份txt文档。插桩的框架,我选择的是ASM,因为使用ASM进行插桩具有高效性、灵活性、易用性、兼容性和社区活跃等优点,是一种比较优秀的字节码操作框架,对于提高应用程序的性能和可维护性具有重要意义。

那么通过ASM是如何扫描到的呢?

要扫描到创建线程池的类名,你需要使用ASM的访问者模式(Visitor Pattern)来遍历字节码中的方法和指令。在遍历过程中,当遇到创建线程的指令(如:new java/util/concurrent/ThreadPoolExecutor)时,就可以获取到创建线程的类名。

import org.objectweb.asm.*;public class ThreadPoolDetectorClassVisitor extends ClassVisitor {public ThreadPoolDetectorClassVisitor(int api, ClassVisitor classVisitor) {super(api, classVisitor);}@Overridepublic MethodVisitor visitMethod(int access, String name, String desc, String signature, String[] exceptions) {MethodVisitor mv = cv.visitMethod(access, name, desc, signature, exceptions);return new ThreadPoolDetectorMethodVisitor(api, mv);}class ThreadPoolDetectorMethodVisitor extends MethodVisitor {public ThreadPoolDetectorMethodVisitor(int api, MethodVisitor methodVisitor) {super(api, methodVisitor);methodVisitor);}@Overridepublic void visitMethodInsn(int opcode, String owner, String name, String desc, boolean itf)) {if (opcode == Opcodes.INVOKESTATIC && owner.startsWith("java/util/concurrent/Executors")) {System.out.println("Detected creation of new ThreadPool!");}super.visitMethodInsn(opcode, owner, name, desc desc, itf);}}
}
  1. 统计和分类扫描到的创建线程和线程池的类名

  • 扫描到的结果

  • 结果进行分类

  • 结果的用处
  1. 了解项目现状。
  2. 对后续优化可以设置白名单。
  3. 可以对线上设置的线程进行降级处理。

3. 线程和线程池优化

3.1 线程优化

  • 对于APP业务层和自研SDK,我们检查是否真的需要直接new thread,能否用线程池代替,如果必须创建单个线程,那我们创建的时候必须加上线程名,方便排查线程问题。
  • 对于三方SDK,那就可以通过插桩来重命名(名称必须少于16个字符),方便尽快知道该线程是来自哪个SDK。

3.2 线程池优化

  • 对于APP业务层,我们需要提供常用线程池,例如I/O、CPU、Single、Cache等等线程池,避免开发各自创建重复的线程池。
  • 对于自研SDK,我们尽量让架构组的开发同学提供可以设置自定义线程池的能力,方便我们代理到我们APP业务层的线程池。
  • 对于三方SDK,首先了解有没有提供设置我们自定义线程池的接口,有的话,那就直接设置我们APP业务层的线程池。如果没有这种能力,那我们就进行插桩来进行线程池收敛。在进行三方SDK插桩代理的时候,需要注意三点:
  1. 设置白名单,进行逐步代理。
  2. 针对不同的SDK,要区分是本地任务还是网络任务,这样能明确是代理到I/O线程池还是CPU线程池。
  3. 设置降级开关,方便线上有问题时,及时对单个SDK进行降级处理。
3.2.1 行业方案

(1)反射收敛,但是使用反射来收敛线程池的确有一些潜在的弊端:

  • 性能开销:反射在执行时需要进行一系列的检查和解析,这会比直接的Java方法方法调用带来更大的性能开销。
  • 安全问题:反射可以访问所有的字段和方法,包括私有有的和受保护的,这可能会破坏对象的封装性,导致安全问题。
  • 代码复杂性:使用反射的代码通常比直接的Java代码更复杂,更难理解和维护。

因此,虽然反射是一种强大的工具,但在使用时需要谨慎,尽量避免不必要的使用。

(2)代理收敛,但是使用代理设计模式来收敛线程池也有一些潜在的弊端:

  • 增加复杂性:代理方式会引入额外的类和对象,这会增加系统的复杂性。对于简单的问题,使用代理可能会显得过于复杂。
  • 代码可读性:由于代理方式涉及到额外的抽象层,这可能会对代码的可读性产生一定的影响。
  • 调试困难:由于代理模式的存在,错误可能会被掩盖或者难以定位,这可能会使得调试变得更加困难。

因此,虽然代理模式是一种强大的设计模式,但在使用时也需要考虑到这些潜在的问题。

(3)协程收敛,但是使用协程收敛线程池也有一些局限性和潜在的弊端:

  • 需要依赖Kotlin协程库:使用Kotlin协程需要依赖Kotlin协程库,如果应用程序中没有使用Kotlin语言,那么需要额外引入Kotlin库,增加了应用程序的体积。
  • 协程的执行时间不能过长:Kotlin协程的执行时间不能过长,否则会影响其他协程的执行。因此,在使用Kotlin协程进行线程收敛时,需要合理控制协程的执行时间。
  • 可能会导致内存泄漏:如果协程没有正确地取消,可能会导致内存泄漏。因此,在使用Kotlin协程时,需要注意正确地取消协程。

因此,虽然Kotlin协程可以通过使用协程调度器来实现线程收敛,但是也存在一些弊端,需要开发者根据具体情况来选择是否使用。

(4)插桩收敛,虽然插桩也有一些不足之处:

  • 可能影响程序行为:如果插桩代码改变了程序的状态或者影响了线程的线程的调度,那么它可能会改变程序的行为。
  • 可能引入错误:如果插桩代码桩代码本身存在错误,那么它可能会引入新的错误到程序中。

但是这些缺点在线程池收敛的时候还是可控的,相比于上面的反射收敛、代理收敛和协程收敛来说,还有许多优点:

  • 直接性:插桩直接在代码中插入额外的逻辑,不需要通过代理或反射射间接地操作对象,这使得插桩更直接,更易于理解和控制。
  • 灵活活性:插桩可以在任何位置插入代码,,这提供了很大的灵活性。而代理和反射通常只能操作公开的接口和方法。
  • 无需修改原始代码:插桩通常常不需要常不需要修改原始的线程池代码,这使得它可以在不影响原始代码的情况下收集信息。
  • 颗粒度控制:可以对某个方法或某段代码进行线程收敛,而不是整个应用程序。

综上所述,我就选择了更加通用、灵活、精确的方式来收敛二方和三方的线程池—插桩代理

3.2.2 代码设计图

3.2.3 代码流程图

暂时无法在飞书文档外展示此内容

3.2.4 代码实施
  1. 创建NewThreadTrackerPlugin,在插件里主要是获取到需要进行代理的线程池白名单以及注册ThreadTrackerTransform。
class NewThreadTrackerPlugin implements Plugin<Project> {@Overridevoid apply(Project project) {System.out.println("ThreadTracker:start ThreadTrackerPlugin")project.getRootProject().getSubprojects().each { subProject ->PluginUtils.addProjectName(subProject.name)PluginUtils.projectPathList.add(subProject.projectDir.toString())}org.gradle.api.plugins.ExtraPropertiesExtension ext = project.getRootProject().getExtensions().getExtraProperties()//通过配置来设置是否需要输出所有创建线程池的txt文件,文件名为"thread_tracker_XXX.txt"if (ext.has("scanProject")) {boolean scan = ext.get("scanProject")PluginUtils.setScanProject(scan)System.out.println("ThreadTracker:需要扫描项目吗?" + scan)}//通过配置来获取需要进行插桩代理的白名单if(ext.has("whiteList")){List<String> list = ext.get("whiteList")PluginUtils.addWhiteList(list)}else {System.out.println("ThreadTracker:请创建thread_tracker.gradle文件,设置whiteList白名单")}//注册ThreadTrackerTransform。//Gradle Transform 是 Android 官方提供给开发者在项目构建阶段,即由 .class 到 .dex 转换期间修改 .class 文件的一套 API。目前比较经典的应用是字节码插桩、代码注入技术。AppExtension appExtension = (AppExtension) project.getProperties().get("android")appExtension.registerTransform(new ThreadTrackerTransform(), Collections.EMPTY_LIST)}}
  1. 创建 ThreadTrackerTransform,重写ThreadTrackerTransform的transform方法,在该方法里面来遍历文件目录下和Jar包中的class文件,并让ClassReader接受的是我们自定义的ThreadTrackerClassVisitor。
/*** transform 方法来处理中间转换过程,主要逻辑在该方法中实现。我们可以在 transform 方法中,实现对字节码的修改、处理等操作。* @param transformInvocation*/
@Override
void transform(@NonNull TransformInvocation transformInvocation) {...//对于一个.class文件进行Class Transformation操作,整体思路是这样的:// ClassReader --> ClassVisitor(1) --> ... --> ClassVisitor(N) --> ClassWriterClassReader classReader = new ClassReader(file.bytes)ClassWriter classWriter = new ClassWriter(classReader, ClassWriter.COMPUTE_MAXS)ClassVisitor cv = new ThreadTrackerClassVisitor(classWriter, null)classReader.accept(cv, EXPAND_FRAMES)byte[] code = classWriter.toByteArray()FileOutputStream fos = new FileOutputStream(file.parentFile.absolutePath + File.separator + name)fos.write(code)fos.close()...
}
  1. 创建ThreadTrackerClassVisitor,重写visitMethod来返回自定义的MethodVisitor,通过这个对象来访问方法的详细信息。

在visitMethod方法方法中,我们可以插入自己的代码,以修改或替换原有的方法声明声明。例如,我们可以改变方法的访问权限、改变方法的参数、改变方法的返回值,甚至可以完全替换原有的方法声明。

@Override
public MethodVisitor visitMethod(int access0, String name0, String desc0, String signature0, String[] exceptions) {MethodVisitor mv = cv.visitMethod(access0, name0, desc0, signature0, exceptions);if (filterClass(className)) {return mv;}return new ProxyThreadPoolMethodVisitor(ASM6, mv, className);
}/**
*。 过滤掉不需要插桩的类,比如这个插桩代码模块、自定义的线程池等等
**/
private boolean filterClass(String className) {return className.contains("com/lalamove/threadtracker/") || className.contains("com/lalamove/plugins/thread") || className.contains("com/tencent/tinker/loader") || className.contains("com/lalamove/huolala/client/asm/HllPrivacyManager");
}
  1. 创建ProxyThreadPoolMethodVisitor,并重写它的visitMethodInsn方法来真实插桩自己的线程池。

在visitMethodInsn方法中,我们可以插入自己的代码,以修改或替换原有的方法调用。

  @Overridepublic void visitMethodInsn(int opcode, String owner, String name, String descriptor, boolean isInterface) {//如果配置中是需要扫描App,则把创建线程池的类名全部都写在"thread_tracker_XXX.txt"里面,供开发者统计、分类、设置白名单和降级处理if (PluginUtils.getScanProject()) {if (owner.equals(O_ThreadPoolExecutor) && name.equalsIgnoreCase("<init>")) {PluginUtils.writeClassNameToFile("创建ThreadPoolExecutor的类:" + className);} }//如果配置中是需要插桩代理线程池,则把原本的类 "java/util/concurrent/ThreadPoolExecutor"换成了我们自定义的类"com/lalamove/threadtracker/proxy/BaseProxyThreadPoolExecutor"//mClassProxy只是一个总开关,是否开启代理;具体某个类是否需要代理,在创建线程池的具体地方会根据类名来判断if (mClassProxy) {if (owner.equals(O_ThreadPoolExecutor) && name.equalsIgnoreCase("<init>")) {if ("(IIJLjava/util/concurrent/TimeUnit;Ljava/util/concurrent/BlockingQueue;)V".equalsIgnoreCase(descriptor)) {mv.visitLdcInsn(className);mv.visitMethodInsn(opcode, O_BaseProxyThreadPoolExecutor, name, "(IIJLjava/util/concurrent/TimeUnit;Ljava/util/concurrent/BlockingQueue;Ljava/lang/String;)V", false);} else if ("(IIJLjava/util/concurrent/TimeUnit;Ljava/util/concurrent/BlockingQueue;Ljava/util/concurrent/ThreadFactory;)V".equalsIgnoreCase(descriptor)) {mv.visitLdcInsn(className);mv.visitMethodInsn(opcode, O_BaseProxyThreadPoolExecutor, name, "(IIJLjava/util/concurrent/TimeUnit;Ljava/util/concurrent/BlockingQueue;Ljava/util/concurrent/ThreadFactory;Ljava/lang/String;)V", false);} else if ("(IIJLjava/util/concurrent/TimeUnit;Ljava/util/concurrent/BlockingQueue;Ljava/util/concurrent/RejectedExecutionHandler;)V".equalsIgnoreCase(descriptor)) {mv.visitLdcInsn(className);mv.visitMethodInsn(opcode, O_BaseProxyThreadPoolExecutor, name, "(IIJLjava/util/concurrent/TimeUnit;Ljava/util/concurrent/BlockingQueue;Ljava/util/concurrent/RejectedExecutionHandler;Ljava/lang/String;)V", false);} else if ("(IIJLjava/util/concurrent/TimeUnit;Ljava/util/concurrent/BlockingQueue;Ljava/util/concurrent/ThreadFactory;Ljava/util/concurrent/RejectedExecutionHandler;)V".equalsIgnoreCase(descriptor)) {mv.visitLdcInsn(className);mv.visitMethodInsn(opcode, O_BaseProxyThreadPoolExecutor, name, "(IIJLjava/util/concurrent/TimeUnit;Ljava/util/concurrent/BlockingQueue;Ljava/util/concurrent/ThreadFactory;Ljava/util/concurrent/RejectedExecutionHandler;Ljava/lang/String;)V", false);} else {mv.visitMethodInsn(opcode, O_BaseProxyThreadPoolExecutor, name, descriptor, false);}return;} }super.visitMethodInsn(opcode, owner, name, descriptor, isInterface);}

上述使用到的一些常量定义如下,也引入到了我们自己自定义的线程池。

class ClassConstant {//Java里面创建线程池的类名static final String O_ThreadPoolExecutor = "java/util/concurrent/ThreadPoolExecutor";//自定义创建线程池的类名static final String O_BaseProxyThreadPoolExecutor = "com/lalamove/threadtracker/proxy/BaseProxyThreadPoolExecutor";}
  1. 创建BaseProxyThreadPoolExecutor,重写了创建线程池的所有构造方法,也通过传入的类名判断了该类里面的线程池是否需要代理,以及代理的是的CPU密集型线程池还是IO密集型线程池。
package com.lalamove.threadtracker.proxyimport android.util.Logimport com.lalamove.threadtracker.TrackerUtils
import java.util.concurrent.*/*** ThreadPoolExecutor代理类*/
open class BaseProxyThreadPoolExecutor : ThreadPoolExecutor {var mProxy = true//App层自定义的IO线程池private var threadPoolExecutor: ThreadPoolExecutor =TrackerUtils.getProxyNetThreadPool()constructor(corePoolSize: Int,maximumPoolSize: Int,keepAliveTime: Long,unit: TimeUnit?,workQueue: BlockingQueue<Runnable>?,className: String?,) : super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue) {init(corePoolSize,maximumPoolSize,keepAliveTime, className)}private fun init(corePoolSize: Int,maximumPoolSize: Int,keepAliveTime: Long,className: String?,) {//判断className下创建的线程池是否要被插桩代理if (className != null) {mProxy = TrackerUtils.isProxy(className)}//单线程暂不代理if (corePoolSize == 1 || (corePoolSize == 0 && maximumPoolSize == 1)) {mProxy = false}if (!mProxy) {return}//设置核心线程超时允许销毁if (keepAliveTime <= 0) {setKeepAliveTime(10L, TimeUnit.MILLISECONDS)}allowCoreThreadTimeOut(true)//设置className的线程池被代理为CPU线程池if (className != null && TrackerUtils.proxyCpuClass(className)) {threadPoolExecutor = TrackerUtils.getProxyCpuThreadPool()}}...override fun submit(task: Runnable): Future<*> {return if (mProxy) threadPoolExecutor.submit(task) else super.submit(task)}override fun execute(command: Runnable) {if (mProxy) threadPoolExecutor.execute(command) else super.execute(command)}//注意:不能关闭,否则影响其他被代理的线程池override fun shutdown() {if (!mProxy) {super.shutdown()}}//注意:不能关闭,否则影响其他被代理的线程池override fun shutdownNow(): MutableList<Runnable> {val list = if (mProxy) mutableListOf<Runnable>() else super.shutdownNow()return list}}
3.2.5 实施代理
  1. 在工程最外层创建thread_tracker.gradle,里面可以设置需要代理的线程池白名单。

  1. 通过打印日志就能看出白名单里面的线程池是否被代理成功。

  1. 设置降级开关

(1)设置每个SDK里面细分类名对应的code

(2)在配置系统上设置需要关闭SDK,设置上面对应的code码即可。

(3)在APP初始化的时候尽可能早的获取配置系统上的code字符串

(4)在进行代理的时候,会匹配code字符串,来决定具体的线程池是否进行代理。

3.2.6 代理后的收益
  • 累计减少了大约40条线程的开销

4. 线程栈裁剪

4.1 裁剪方式

创建线程的时候,线程默认的栈空间大小为 1M 左右,经过测试大部分情况下线程内执行的逻辑并不需要这么大的空间,因此线程栈空间减小,可以对内存这块有明显的优化。

接下来我们来看下函数FixStackSize源码,是怎么设置线程栈默认为1M的?

static size_t FixStackSize(size_t stack_size) { //参数是java层中thread 的stack_size默认0if (stack_size == 0) {stack_size = Runtime::Current()->GetDefaultStackSize();}// 默认栈大小是 1Mstack_size += 1 * MB;//...if (Runtime::Current()->ExplicitStackOverflowChecks()) {stack_size += GetStackOverflowReservedBytes(kRuntimeISA);} else {8k+8Kstack_size += Thread::kStackOverflowImplicitCheckSize +GetStackOverflowReservedBytes(kRuntimeISA);}//...return stack_size;}

发现函数的源码实现就是通过 stack_size += 1 * MB 来设置 stack_size 的: 如果我们传入的 stack_size 为 0 时,默认大小就是 1 M ; 如果我们传入的 stack_size 为 -512KB 时,stack_size 就会变成 512KB(1M - 512KB)。 那我们是不是只用带有 stack_size 入参的构造函数去创建线程,并且设置 stack_size 为 -512KB 就行了呢? 应用中创建线程的地方太多很难一一修改,前面我们已经将应用中的线程部分收敛到自定义的线程池中去了,所以只需要修改自定义线程池中创建的线程方式即可。在我们自定义的 ThreadFactory 中,创建 stack_size 为 - 512 KB 的线程,这么一个简单的操作就能减少线程所占用的虚拟内存。

package com.lalamove.threadtracker.proxyimport java.util.concurrent.ThreadFactory
import java.util.concurrent.atomic.AtomicIntegeropen class ProxyThreadFactory : ThreadFactory {override fun newThread(runnable: Runnable): Thread {val mAtomicInteger = AtomicInteger(1)return Thread(null, runnable, "Thread-" + mAtomicInteger.getAndIncrement(), -512 * 1024)}
}

需要注意是线程栈大小的设置需要根据具体的应用场景来进行调整。 如果线程栈大小设置得过小,可能会导致栈溢出等问题; 如果设置得过大,可能会浪费过多的内存资源。 因此,在进行线程栈大小设置时,我这边会设置一个动态的裁剪值,即使有线上问题,我们也可以进行适当的调整,以保证程序的正常运行。

4.2 裁剪后的收益

  • 通过火山引擎的APP性能分析平台对比发现,内存平均值减少了20M

  • 通过Profiler实测,发现和火山引擎检测结果相近
方式Total(单位:M)Java(单位:M)Native(单位:M)Graphics(单位:M)Stack(单位:M)Code(单位:M)Others(单位:M)
关闭代理492.461.1181.657.90.2144.746.9
开启代理464.358.2158.664.50.113943.8

四、收益和踩坑

1. 收益

  • 优化之前,线程数为197条;优化之后,线程数为152条;线程数减少了大约40条
  • 优化之前,内存使用了470.93M;优化之后,内存使用了450.24M;内存减少了大约20M
  • 优化之前,系统CPU使用率为34.83%;优化之后,系统CPU使用率为31.51%;系统CPU使用率降低了3%

  • APP使用的流畅性:优化之前,每秒刷新23.36帧;优化之后,每秒刷新36.3帧;帧率平均每秒增加了13帧。

综上所述:通过插桩代理线程池进行收敛,能有效减少线程数(减少了40条),从而减少内存的使用(减少了20M)、降低CPU使用率(降低了3%)、使得APP使用的流畅性更高(每秒平均多刷新13帧),符合优化预期。

2. 踩坑

  • 网络任务线程和本地任务线程要分开,避免网络不好的时候网络任务堵塞了本地任务
  • 要相互依赖的线程池需要分开代理或者某些不代理,避免出现因为任务排队和互相依赖导致类似“死锁”现象
  • 核心线程数等于1的不要代理,因为不仅优化效果有限,还可能把占用1个线程变成占用多个线程,从而导致部分任务会常驻,占用核心线程

为了帮助到大家更好的全面清晰的掌握好性能优化,准备了相关的核心笔记(还该底层逻辑):https://qr18.cn/FVlo89

性能优化核心笔记:https://qr18.cn/FVlo89

启动优化

内存优化

UI优化

网络优化

Bitmap优化与图片压缩优化https://qr18.cn/FVlo89

多线程并发优化与数据传输效率优化

体积包优化

《Android 性能监控框架》:https://qr18.cn/FVlo89

《Android Framework学习手册》:https://qr18.cn/AQpN4J

  1. 开机Init 进程
  2. 开机启动 Zygote 进程
  3. 开机启动 SystemServer 进程
  4. Binder 驱动
  5. AMS 的启动过程
  6. PMS 的启动过程
  7. Launcher 的启动过程
  8. Android 四大组件
  9. Android 系统服务 - Input 事件的分发过程
  10. Android 底层渲染 - 屏幕刷新机制源码分析
  11. Android 源码分析实战

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/112578.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android问题笔记 - 关于SuperNotCalledException报错异常信息的解决方案

点击跳转>Unity3D特效百例点击跳转>案例项目实战源码点击跳转>游戏脚本-辅助自动化点击跳转>Android控件全解手册点击跳转>Scratch编程案例点击跳转>软考全系列 &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff0c;以及各种资源分享&…

互联网Java工程师面试题·Java 面试篇·第一弹

目录 1、Java 中能创建 volatile 数组吗&#xff1f; 2、volatile 能使得一个非原子操作变成原子操作吗&#xff1f; 3、volatile 修饰符的有过什么实践&#xff1f; 4、volatile 类型变量提供什么保证&#xff1f; 5、10 个线程和 2 个线程的同步代码&#xff0c;哪个更容…

使用 ClickHouse 深入了解 Apache Parquet (二)

【squids.cn】 全网zui低价RDS&#xff0c;免费的迁移工具DBMotion、数据库备份工具DBTwin、SQL开发工具等 这篇文章是我们的 Parquet 和 ClickHouse 博客系列的第二部分。在这篇文章中&#xff0c;我们将更详细地探讨 Parquet 格式&#xff0c;重点介绍使用 ClickHouse 读写文…

Xline 源码解读(四)—— CURP 状态机引擎

在上一篇源码解读的文章&#xff08;Xline 源码解读&#xff08;三&#xff09; —— CURP Server 的实现&#xff09;中&#xff0c;我们简单阐述了Xline 的 Curp Server 是如何实现的。接下来&#xff0c;就让我们话接上回&#xff0c;继续深入地来了解 Curp Server 中的一些…

利用Python爬虫获取某乎热榜

如今&#xff0c;某乎必须要登录才能查看相关话题内容&#xff0c;给我们的日常造成了极大的不便&#xff0c;今天我就教大家如何利用简单的代码&#xff0c;绕开登录限制。 准备工作 配置好python运行环境&#xff0c;推荐 pycharm。复制下面的源代码&#xff0c;运行&#x…

LNMP架构部署Discuz论坛系统

文章目录 LNMP架构&部署Discuz论坛系统部署LNMP架构环境前期准备安装Nginx安装mariadb安装php配置nginx 部署Discuz论坛系统下载Discuz论坛系统代码包部署Discuz论坛系统配置虚拟主机安装Discuz论坛访问站点尝试注册一个账号 LNMP架构&部署Discuz论坛系统 部署LNMP架构…

试着写几个opencv的程序

一、认识opencv OpenCV&#xff08;Open Source Computer Vision Library&#xff09;是一个开源计算机视觉库&#xff0c;旨在提供丰富的图像处理和计算机视觉功能&#xff0c;以帮助开发者构建视觉应用程序。OpenCV最初由英特尔开发&#xff0c;现在由社区维护和支持。它支持…

Day5力扣打卡

打卡记录 对角线上不同值的数量差&#xff08;矩阵对角线遍历 前缀和&#xff09; 链接 思路&#xff1a;由于任意行 i 与 列 j&#xff0c;满足对角线上 i j t 的关系&#xff0c;t 的范围为 [1 - n, m - 1]&#xff0c;设 s t n&#xff0c;可以得到 s的范围为 [1, n …

计算机网络学习笔记(四):网络层(待更新)

目录 4.1 IP地址、子网划分、合并超网 4.1.1 IP地址、子网掩码、网关 4.1.2 IP地址的编址方法1&#xff1a;IP地址分类&#xff08;A~E类地址、保留的IP地址&#xff09; 4.1.4 IP地址的编址方法2&#xff1a;子网划分&#xff08;等长、变长&#xff09; 4.1.5 IP地址的编…

Adobe 推出 Photoshop Elements 2024 新版

&#x1f989; AI新闻 &#x1f680; Adobe 推出 Photoshop Elements 2024 新版 摘要:Adobe 最新发布 Photoshop Elements 2024 版本,新增引入 AI 功能,提供匹配颜色、创建照片卷、一键选择照片天空或背景等新功能,界面也进行了优化更新。本次发布重点加强了 AI 支持,简化复杂…

打卡go学习第一天

8.1 下面展示一些 代码。 package mainimport ("fmt""net""os""time" )type Clock struct {Name stringAddr string &#xff5d; func main() {clocks : []Clock{{Name: "New York", Addr: "localhost:8000"…

spring cloud Eureka集群模式搭建(IDEA中运行)

spring cloud Eureka集群模式搭建&#xff08;IDEA中运行&#xff09; 新建springboot 工程工程整体目录配置文件IDEA中部署以jar包形式启动总结 新建springboot 工程 新建一个springboot 工程&#xff0c;命名为&#xff1a;eureka_server。 其中pom.xml文件为&#xff1a; …

OnlyOffice documentType类型值

参考官网说明&#xff1a; https://api.onlyoffice.com/editors/config/#documentType 其值为&#xff1a;word | cell | slide

SpringCloud: feign整合sentinel实现降级

一、加依赖&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache…

060:mapboxGL点击某处,通过flyTo,以动画的形式聚焦到此点

第060个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+mapbox中点击某处,通过flyto,以动画的形式聚焦到此点。这里用到了flyTo的方法,里面可以设置bearing,zoom,pitch等众多的属性内容。 直接复制下面的 vue+mapbox源代码,操作2分钟即可运行实现效果 文章目录 示…

RabbitMQ运行机制和通讯过程介绍

文章目录 1.RabbitMQ 环境搭建2.RabbitMQ简介3.RabbitMQ的优势&#xff1a;4. rabbitmq服务介绍4.1 rabbitmq关键词说明4.2 消息队列运行机制4.3 exchange类型 5.wireshark抓包查看RabbitMQ通讯过程 1.RabbitMQ 环境搭建 参考我的另一篇&#xff1a;RabbitMQ安装及使用教程&am…

SystemVerilog Assertions应用指南 Chapter1.20“ $past”构造

1.20“ $past”构造 SVA提供了一个内嵌的系统任务“$past”,它可以得到信号在几个时钟周期之前的值。在默认情况下,它提供信号在前一个时钟周期的值。结构的基本语法如下 $past (signal_name ,number of clock cycles) 这个任务能够有效地验证设计到达当前时钟周期的状态所采用…

购药不烦恼:线上购药小程序的快捷方式

在这个数字化时代&#xff0c;线上购药小程序的快捷方式正在改变着我们购药的方式。本文将介绍如何通过使用Python和Flask框架创建一个简单的线上购药小程序的原型&#xff0c;为用户提供购药的便利和快捷体验。 安装和设置 首先&#xff0c;确保你已经安装了Python和Flask。…

AUTOSAR AP 硬核知识点梳理(2)— 架构详解

一 AUTOSAR 平台逻辑体系结构 图示逻辑体系结构描述了平台是如何组成的,有哪些模块,模块之间的接口是如何工作的。 经典平台具有分层的软件体系结构。定义明确的抽象层,每个抽象层都有精确定义的角色和接口。 对于应用程序,我们需要考虑使用的软件组件,希望它们是可重用的…

墨迹天气商业版UTF-8模板,Discuz3.4灰白色风格(带教程)

1.版本支持&#xff1a;Discuzx3.4版本&#xff0c;Discuzx3.3版本&#xff0c;DiscuzX3.2版本。包括网站首页&#xff0c;论坛首页&#xff0c;论坛列表页&#xff0c;论坛内容页&#xff0c;论坛瀑布流,资讯列表页(支持多个)&#xff0c;产品列表页(支持多个)&#xff0c;关于…