【JavaEE】Java多线程编程案例 -- 多线程篇(3)

Java多线程编程案例

  • 1. 单例模式
    • 1.1 代码的简单实现
    • 1.2 懒汉模式的线程安全代码
  • 2. 阻塞队列
    • 2.1 阻塞队列的概念
    • 2.2 使用库中的BlockingDeque
    • 2.3 模拟实现阻塞队列
    • 2.4 生产者消费者模型
  • 3. 定时器
    • 3.1 概念
    • 3.2 使用库的定时器 - Timer类
    • 3.3 模拟实现定时器
  • 4. 线程池
    • 4.1 概念
    • 4.2 使用库中的线程池
    • 4.3 线程池模拟实现

1. 单例模式

1.1 代码的简单实现

  • 应用场景: 一个项目中, 该对象只能创建一个

饿汉模式 – 迫切, 程序启动, 类加载之后, 立即创建出实例

代码示例

class SingletonHungryMode { // 不加以任何限制就是线程安全的private static SingletonHungryMode instance = new SingletonHungryMode(); // 直接newpublic static SingletonHungryMode getInstance() {return instance;}// 添加限制, 让外部无法 new 出对象private SingletonHungryMode() {}
}

优点:

  • 编写代码简单

缺点:

  • 一开始就需要加载对象, 会降低程序的启动速率, 一开始不需要用到该对象的时候, 就会体验感下降

懒汉模式 - 正在需要用到实例的时候才创建对象

class SingletonLazyMode {private static SingletonLazyMode instance = null; // 不是直接new// 这个版本不是线程安全的 public static SingletonLazyMode getInstance() {if (instance == null) {instance = new SingletonLazyMode();}return instance;}// 添加限制, 让外部无法 new 出对象private SingletonLazyMode() {}
}

优点:

  • 可以在需要的时候在new出实例对象, 可以提高程序界面的加载速度

Java的反射与单例模式的思考

我们都知道, Java提供了反射机制, 通过反射, 我们可以得到类的所有信息, 可以得到private修饰的构造函数, 就可以new 多个对象, 这样单例模式中private修饰;

那么我们通过private修饰构造方法设计的单例模式是不是就存在问题呢? 是的! 使用反射, 确实可以在当前单例模式中, 创建出多个实例;

反射是属于 “非常规” 的编程手段, 正常开发的时候, 不应该使用/慎用; 滥用反射, 会带来极大的风险, 会让代码变的抽象, 难以维护!

Java 中也有实现单例模式而不怕反射的

1.2 懒汉模式的线程安全代码

懒汉模式下线程不安全的原因

在这里插入图片描述

解决方案 1)

// 版本2 加锁保证, 但是存在频繁加锁的问题 -- 效率低
public static SingletonLazyMode getInstance() {synchronized (locker) {if (instance == null) {instance = new SingletonLazyMode();}}return instance;
}
  • 加锁就保证了线程安全了
  • 效率分析
    • 加锁是一个成本比较高的操作, 教唆可能会引起阻塞
    • 加锁的基本原则, 应该是, 非必要, 不加锁, 不能无脑加锁, 如果无脑加锁, 就会导致程序执行效率受到影响。
    • 上述代码除了要保证创建对象的时候需要保证 if语句是原子, 剩下的时候条件都为 false, 所以此时的加锁就很重

解决方案 2)

// 版本3 双重判断, 避免无脑加锁 -- 效率高
public static SingletonLazyMode getInstance() {if (instance == null) { // 条件判断是否需要加锁synchronized (locker) {if (instance == null) { // 条件判断是否需要创建新的对象instance = new SingletonLazyMode();}}}return instance;
}
  • 这样基本可以保证线程安全了
  • 但是还存在一个特别的情况, 内存可见性的问题!!!

在这里插入图片描述

  • volatile 还有一个功能, 避免指令的重排序的问题
    • 指令重排序也是编译器优化一种首单
    • 保证原有的逻辑不变的前提下, 对代码执行顺序进行调整, 调整之后的执行效率提高。
    • 如果是单线程, 这样的重排序, 一般没事
    • 如果是多线程, 就可能出现问题了
指令重排序可能出现的问题
  • 对于Instance = new SingletonLazy()指令步骤
    1. 给对象创建出内存空间, 得到内存地址
    2. 在空间上调用构造方法, 对对象进行初始化
    3. 把内存地址, 赋值给 Instance 引用
  • 此处就可能涉及到指令重排序
    • 1 2 3 -> 132
    • 如果是单个线程, 此时无所谓, 但是多线程就不一定了

在这里插入图片描述

  • 给Instance加上 volatile 之后, 此时针对 Instance 进行的赋值操作, 就不会产生上述的指令重排序了, 必然按照 1 2 3 顺序执行!

解决方案 3) – 最终版本

 private static volatile SingletonLazyMode instance = null; // 不是直接new// 版本3 双重判断, 避免无脑加锁 -- 效率高public static SingletonLazyMode getInstance() {if (instance == null) { // 条件判断是否需要加锁synchronized (locker) {if (instance == null) { // 条件判断是否需要创建新的对象instance = new SingletonLazyMode();}}}return instance;}// 添加限制, 让外部无法 new 出对象private SingletonLazyMode() {}
  • Java中实现单例模式的三个关键点
    1. 加锁
    2. 双重if
    3. volatile

2. 阻塞队列

2.1 阻塞队列的概念

  • 阻塞队列, 带有阻塞功能
    1. 当队列满的时候, 继续入队列, 就会出现阻塞, 阻塞到其它线程从队列中取走元素为止
    2. 当队列空的时候, 继续出队列, 也会出现阻塞, 阻塞到其它线程往队列中添加元素为止

2.2 使用库中的BlockingDeque

  • 两个关键的方法
    • put 入队列 – 具有阻塞功能
    • take 出队列 – 具有阻塞功能

【使用示例】

 public static void main(String[] args) throws InterruptedException {BlockingDeque<String> queue = new LinkedBlockingDeque<>(10);// put 入队列, take 出队列  -- 这两个方法有阻塞的功能queue.put("Hello BlockingDeque");String elem = queue.take();System.out.println(elem);elem = queue.take();System.out.println(elem);// offer 入队列, poll 出队列 -- 这两个方法没有阻塞的功能// queue.offer("test");// System.out.println(queue.poll());// System.out.println(queue.poll());}

2.3 模拟实现阻塞队列

public class MyBlockingDeque {// 使用一个 String 类型的数组来保存元素. 假设这里只存 String.private String[] strings;// 指向队列的头部private int head;// 指向队列的尾部的下一个元素. 总的来说, 队列中有效元素的范围 [head, tail)// 当 head 和 tail 相等(重合), 相当于空的队列.private int tail;// 使用 size 来表示元素个数.private int size;private final static int DEFAULT_CAPACITY = 1000;// 加锁对象private Object locker;public MyBlockingDeque() {this(DEFAULT_CAPACITY);}public MyBlockingDeque(int capacity) {strings = new String[capacity];head = tail = size = 0;locker = new Object();}public void put(String str) throws InterruptedException {synchronized (locker) {// if (isFull()) {while (isFull()) { // 循环判断, 保证醒来的时候队列不满了// 队列满, 进行wait等待locker.wait();// return;}strings[tail] = str;++tail;if (tail >= strings.length) {tail = 0;}++size;locker.notify(); // 生产完, 唤醒消费消费者进行消费}}public String take() throws InterruptedException {synchronized (locker) {while (isEmpty()) {locker.wait(); // 等待生产者生产// return null;}String str = strings[head];++head;if (head >= strings.length) {head = 0;}--size;locker.notify();return str;}}private boolean isFull() {return size == strings.length;}private boolean isEmpty() {return size == 0;}
}
  • wait方法的注意事项
    • wait方法醒来的时候, 条件不一定就绪了
    • 被notify唤醒的时候, 一定要用循环条件来判断条件是否成立, 这样才能保证醒来的时候, 条件已经就绪了

2.4 生产者消费者模型

生产者消费者模型的优势

  1. 解耦合

    • 解耦合就是 “降低模块之间的耦合”
    • 通过一个 “交易场所” 来时保证
      • 例如可以通过阻塞队列
      • 有了这个中间交易场所, 对于生产者来说, 只需要关注生产, 生产出来的任务一股脑放进这个交易场所中即可; 如果交易场所满了, 就会告知生产者, 生产者就会阻塞等待消费者行消费
      • 对于消费者来说, 只需要一股脑从交易场所中取出任务即可了, 当没有任务的时候, 交易场所会告知消费者, 消费者就会进行阻塞等待生产者生产任务
      • 所以这样, 如果消费者出问题了, 也不会影响到生产者, 相反也是一样的, 最多也就是阻塞等待而已; 这样就实现了解耦合操作
      • 这个交易场所也可以加入更多的消费者来消费, 更多的生产者来生成, 他们之间都是互相不受影响的
  2. 削峰填谷

    • 如果生产者生成能力大于消费者消费能力, 当生产者把交易场所填满的时候就会阻塞等待消费者消费 – 这样就使得生产者和消费者步调一致了
生产者消费者示例
public static void main(String[] args) {BlockingDeque<Integer> queue = new LinkedBlockingDeque<>(100);Thread consumer = new Thread(() -> {while (true) {try {Integer task = queue.take();System.out.println("消费:" + task);// Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}}});Thread producer = new Thread(() -> {int count = 0;while (true) {try {Thread.sleep(1000);queue.put(count);System.out.println("生产: " + count);++count;} catch (InterruptedException e) {e.printStackTrace();}}});consumer.start();producer.start();}

3. 定时器

3.1 概念

  • 定时器就相当于一个闹钟, 在未来某个时间去做某件事, 起到提醒的作用

3.2 使用库的定时器 - Timer类

  • 标准库中提供了一个 Timer 类, Timer 类的核心方法为 schedule
  • schedule 包含两个参数, 第一个参数指定即将要执行的任务代码, 第二参数指定多长时间后执行 (单位为毫秒);

public static void main(String[] args) {Timer timer = new Timer();timer.schedule(new TimerTask() {@Overridepublic void run() {System.out.println("Hello 3");}}, 3000);timer.schedule(new TimerTask() {@Overridepublic void run() {System.out.println("Hello 2");}}, 2000);timer.schedule(new TimerTask() {@Overridepublic void run() {System.out.println("Hello 1");}}, 1000);System.out.println("程序开始运行!");}
  • Timer 内部, 有自己的线程
  • 为了保证随时可以处理新安排的任务, 这个线程会持续执行, 并且这个线程还是个前台线程

3.3 模拟实现定时器

在这里插入图片描述
在这里插入图片描述

4. 线程池

4.1 概念

  • 池的作用: 就是提高效率的

    • 有 线程池
    • 内存池
    • 进程池
    • 常量池
  • 线程池的作用

    • 如果我们需要频繁的创建销毁线程, 此时创建销毁线程的成本, 就不能忽视了, 因此就可以使用线程池
    • 提前创建好一波线程, 后续需要使用下层, 就直接从池子里拿一个一个即可
    • 当线程不在使用, 就放回池子里面
    • 这样就可以避免频繁的创建和销毁线程了
  • 本来, 是需要创建线程/销毁线程; 现在, 是从池子里获取现成的线程, 并且把用完的线程归还到池子中

    • 为啥, 从池子里取, 就比从系统这里创建线程更快更高效呢?
      • 如果从系统这里创建线程, 需要调用系统 API, 进一步的由操作系统内核完成线程的创建过程 (内核是给所有进程提供服务的) – 这不可控
      • 如果从线程池里面获取现成, 上述的内核中进行的操作, 都提前做好了, 现在的取线程的过程, 纯粹的由用户代码完成(纯用户态) 这是可控的

4.2 使用库中的线程池

工程模式

  • 工厂使用来生产的, 所以工程模式是用来生产对象的
  • 设计原因
    • 一般创建对象, 都是通过new, 通过构造方法, 但是构造方法, 存在重大缺陷; 构造方法的名字固定是类名, 有的类, 需要有多种不同的构造方法, 但是构造方法的名字有固定, 就只能使用方法重载的方式来实现了, 当时这里存在一定的局限性!在这里插入图片描述

    • 此时工厂模式就可以解决上述的问题了

      • 使用工厂模式, 不适用构造方法了, 使用普通的方法来构造对象, 这样的方法名就可以是任意的了
      • 普通方法内部, 在new 对象 – 由于普通方法的目的是为了创建对象来, 这样的方法一般都是静态的在这里插入图片描述

使用工程模式创建线程池

  • 使用 Executors.newFixedThreadPool(10) 能够创建出固定包含 10 个线程的线程池
  • 返回值类型为 ExecutorServer
  • 通过ExecutorServer.submit 可以注册一个任务到线程池中
 public static void main(String[] args) {ExecutorService pool = Executors.newFixedThreadPool(10);for (int i = 0; i < 1000; i++) {pool.submit(() -> {System.out.println("Hello thread Pool");});}}
  • Executors 创建线程池的几种方式
    • newFixedThreadPool: 创建固定线程数的线程池
    • newCachedThreadPool: 创建线程数目动态增长的线程池
    • newSingleThreadExecutor: 创建只包含当个线程的线程池
    • newScheduleThreadPool: 设定延迟时间后执行命令, 后定期执行命令, 是进阶版的 Timer
  • Executors 本质是ThreadPoolExecutor 类的封装

使用 Java原生的线程池构造方法来创建 (重点)

在这里插入图片描述

  • 参数含义:
    • int corePoolSize
      • 核心线程数
      • ThreadPoolExecutor 里面的线程个数, 并非是固定不变的, 会根据当前任务的情况动态发生变化(自适应)
      • 至少得有这些线程, 哪怕线程里面的人物一点也没有
    • int maximumPoolSize
      • 最大线程数
      • 最多不能超过这些线程, 哪怕线程池忙的冒烟了, 也不能比这个数目更多了

上述两个参数, 做到了既能保证繁忙的时候高效处理任务, 又能保证空间的时候不会浪费资源


  • long keepAliveTime, TimeUnit unit
    • 前者表示的是数值; 后者是一个枚举变量, 里面定义时间的各种单位

这个两个参数, 说明了, 多余的线程, 空间闲时间超过指定的时间阈值, 就可以被销毁了!


  • BlockingQueue<Runnable> workQueue
    • 线程池内部有很多任务, 这些任务可以使用阻塞队列来管理
    • 线程池可以内置阻塞队列, 也可以手动指定一个
  • ThreadFactory threadFactory
    • 工厂模式, 通过这个工厂类创建线程
  • RejectedExecutionHandler handler
    • 线程池考察的重点, 拒绝方式/拒绝策略
    • 线程池, 有一个阻塞队列, 当阻塞队列满了之后, 继续添加任务, 应该如何应对
    • 对应的处理动作如下
      • ThreadPoolExecutor.AbortPolicy
        • 直接抛出异常, 线程池直接不干活了
      • ThreadPoolExecutor.CallerRunsPolicy
        • 谁是添加这个新任务的线程, 谁就去执行这个任务
      • ThreadPoolExecutor.DiscardOldestPolicy
        • 丢弃最早的任务, 执行新的任务
      • ThreadPoolExecutor.DiscardPolicy
        • 直接把这个新的任务给丢弃了

创建线程池方法的总结

上述都是创建线程池的手段, 具体用什么方法创建线程池, 主要看的是具体的应用场景

线程池中线程数量的思考

  • 线程池中线程的数量主要是看线程工作的类型来决定的
  • 主要应用类型所对应的线程数量
    • “CPU密集型”
      • 此时线程的工作全是运算
      • 大部分工作都是在 CPU 上完成的, CPU 得给他安排核心去完成工作, 才可以有进展
      • 如果 CPU 是 N 个核心, 当你线程数量也是 N 的时候, 理想情况 每个 核心 上一个线程
      • 如果搞很多线程, 线程也是在排队等待, 不会有新的进展
    • “IO密集型”
      • 读写文件, 等待用户输入, 网络通信
        • 涉及到大量的等待事件, 等待的过程中没有使用 CPU
        • 这样的线程就算更多写, 也不会给CPU 造成太大的负担
        • 比如 CPU 是 16 个核心, 写 32 个线程 – 由于是 IO 密集的, 这里的大部分线程都在等, 都不消耗 CPU, 反而 CPU 的占用情况还很低
  • 实际开发中, 一个线程往往是一部分工作是 CPU 密集的, 一部分工作是 IO 密集的; 此时, 一个线程, 几成是在 CPU 上运行, 几成实在等待IO, 说不好; 这里更好的做法, 是通过实验的方法, 来找到合适的线程数!
  • 性能测试, 尝试不同的线程数目, 尝试过程中, 找打性能和系统资源开销比较均衡的数值

4.3 线程池模拟实现

public class MyThreadPool {BlockingDeque<Runnable> queue = new LinkedBlockingDeque<>(10);// 通过这个方法, 来把任务添加到线程池中.public void submit(Runnable runnable) throws InterruptedException {queue.put(runnable);}// n 表示线程池里有几个线程.// 创建了一个固定数量的线程池.public MyThreadPool(int n) {for (int i = 0; i < n; i++) {Thread t = new Thread(() -> {while (true) {try {// 取出任务, 并执行~~Runnable runnable = queue.take();runnable.run();} catch (InterruptedException e) {e.printStackTrace();}}});t.start();}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/112535.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

面向对象设计原则之依赖倒置原则

目录 定义原始定义进一步的理解 作用实现方法代码示例 面向对象设计原则之开-闭原则 面向对象设计原则之里式替换原则 面向对象设计原则之依赖倒置原则 面向对象设计原则之单一职责原则 定义 依赖倒置原则&#xff08;Dependence Inversion Principle&#xff09;&#xff0c…

互联网Java工程师面试题·Java 总结篇·第十一弹

目录 90、简述一下你了解的设计模式。 91、用 Java 写一个单例类。 92、什么是 UML&#xff1f; 93、UML 中有哪些常用的图&#xff1f; 94、用 Java 写一个冒泡排序。 95、用 Java 写一个折半查找。 90、简述一下你了解的设计模式。 所谓设计模式&#xff0c;就是一套被…

最新Ai写作创作系统源码+Ai绘画系统源码+搭建部署教程+支持GPT4.0+支持Prompt预设应用+思维导图生成

一、AI创作系统 SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统AI绘画系统&#xff0c;支持OpenAI GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署…

2、Kafka 生产者

3.1 生产者消息发送流程 3.1.1 发送原理 在消息发送的过程中&#xff0c;涉及到了两个线程——main 线程和 Sender 线程。在 main 线程 中创建了一个双端队列 RecordAccumulator。main 线程将消息发送给 RecordAccumulator&#xff0c; Sender 线程不断从 RecordAccumulator 中…

OpenCV 笔记(2):图像的属性以及像素相关的操作

Part11. 图像的属性 11.1 Mat 的主要属性 在前文中&#xff0c;我们大致了解了 Mat 的基本结构以及它的创建与赋值。接下来我们通过一个例子&#xff0c;来看看 Mat 所包含的常用属性。 先创建一个 3*4 的四通道的矩阵&#xff0c;并打印出其相关的属性&#xff0c;稍后会详细…

安装Sentinel

大家好今天来安装Sentinel . 安装Sentinel 下载 : 大家可以选择相应版本(最新版本1.8.6) 官网下载地址 : Release v1.8.6 alibaba/Sentinel GitHub 链接&#xff1a;Sentinel_免费高速下载|百度网盘-分享无限制 (baidu.com) 提取码&#xff1a;8eh9 运行 : 将jar包放到任…

Youtrack Linux 安装

我们考虑最后应该使用的是 ZIP 方式的安装。 按照官方的说法如何设置运行 YouTrack 应该是非常简单的。 准备环境 根据官方的说法&#xff0c;我们需要做的就是下载 Zip 包&#xff0c;然后把 Zip 包解压到指定的目录中就可以了。 下载 当前官方的下载地址为&#xff1a;Ge…

基于nodejs+vue中学信息技术线上学习系统

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;…

单片机郭天祥(02)

1&#xff1a;解决keil5软件的乱码问题&#xff0c;修改编码为UTF-8 2&#xff1a;打开keil5使用debug对编写好的程序进行调试 给程序打上断点 使用仿真芯片 更改设备管理器相关设置 接通电源后点击debug连接到51单片机 使用stc-isp获取延时函数 将延时函数添加进入创建好的…

17-spring aop调用过程概述

文章目录 1.源码2. debug过程 1.源码 public class TestAop {public static void main(String[] args) throws Exception {saveGeneratedCGlibProxyFiles(System.getProperty("user.dir") "/proxy");ApplicationContext ac new ClassPathXmlApplication…

在JavaScript中,如何创建一个数组或对象?

在JavaScript中,可以使用以下方式创建数组和对象: 一:创建数组(Array): 1:使用数组字面量(Array Literal)语法,使用方括号 [] 包裹元素,并用逗号分隔: let array1 = []; // 空数组 let array2 = [1, 2, 3]; // 包含三个数字的数组 let array3 = [apple, banana,…

Nautilus Chain 与 Coin98 生态达成合作,加速 Zebec 生态亚洲战略进程

目前&#xff0c;行业内首个模块化 Layer3 架构公链 Nautilus Chain 已经上线主网&#xff0c;揭示了模块化区块链领域迎来了全新的进程。在主网上线后&#xff0c;Nautilus Chain 将扮演 Zebec 生态中最重要的底层设施角色&#xff0c;并将为 Zebec APP 以及 Zebec Payroll 规…

ESP32C3 LuatOS TM1650②动态显示累加整数

--注意:因使用了sys.wait()所有api需要在协程中使用 -- 用法实例 PROJECT "ESP32C3_TM1650" VERSION "1.0.0" _G.sys require("sys") local tm1650 require "tm1650"-- 拆分整数&#xff0c;并把最低位数存放在数组最大索引处 loc…

用Nginx搭建一个具备缓存功能的反向代理服务

在同一台服务器上&#xff0c;使用nginx提供服务&#xff0c;然后使用openresty提供反向代理服务。 参考《Ubuntu 20.04使用源码安装nginx 1.14.0》安装nginx。 参考《用Nginx搭建一个可用的静态资源Web服务器》搭建静态资源Web服务器&#xff0c;但是/nginx/conf/nginx.conf里…

Uniapp软件库源码 全新带勋章功能(包含前后端源码)

Uniapp软件库全新带勋章功能&#xff0c;搭建好后台 在前端找到 util 这个文件 把两个js文件上面的填上自己的域名&#xff0c; 电脑需要下载&#xff1a;HBuilderX 登录账号 没有账号就注册账号&#xff0c;然后上传文件&#xff0c;打包选择 “发行” 可以打包app h5等等。…

异常数据检测 | Python基于Hampel的离群点检测

文章目录 文章概述模型描述源码分享文章概述 在时间序列数据分析领域,识别和处理异常点是至关重要的任务。异常点或离群点是明显偏离预期模式的数据点,可能表明存在错误、欺诈或有价值的见解。 应对这一挑战的一种有效技术是汉普尔过滤器(Hampel Filter)。 模型描述 汉…

spark获取hadoop服务token

spark 作业一直卡在accepted 问题现象问题排查1.查看yarn app日志2.问题分析与原因 问题现象 通过yarn-cluster模式提交spark作业&#xff0c;客户端日志一直卡在submit app&#xff0c;没有运行 问题排查 1.查看yarn app日志 appid已生成&#xff0c;通过yarn查看app状态为…

Note——torch.size() umr_maximum() array.max() itertools.product()

torch.size Problem TypeError: ‘torch.Size’ object is not callable Reason Analysis torch.Size函数不可调用 因为torch只可以.size() 或 shape Solution 将y.shape()替换为y.size() 或 y.shape ytorch.normal(0,0.01,y.size())2 return umr_maximum(a, axis, None…

uniapp接入萤石微信小程序插件

萤石官方提供了一些适用于uniapp / 小程序的方案 如 小程序半屏 hls rtmp 等 都TM有坑 文档写的依托答辩 本文参考了uniapp小程序插件 以及 萤石微信小程序插件接入文档 效果如下 1. 插件申请 登录您的小程序微信公众平台&#xff0c;点击左侧菜单栏&#xff0c;进入设置页…

盒式交换机堆叠配置

目录 1.配置环形拓扑堆叠 2.设备组建堆叠 3.设备组件堆叠 堆叠 istack&#xff0c;是指将多台支持堆叠特性的交换机设备组合在一起&#xff0c;从逻辑上组合成一台交换设备。如图所示&#xff0c;SwitchA与 SwitchB 通过堆叠线缆连接后组成堆叠 istack&#xff0c;对于上游和…