OpenCV 笔记(2):图像的属性以及像素相关的操作

Part11.  图像的属性

11.1 Mat 的主要属性

在前文中,我们大致了解了 Mat 的基本结构以及它的创建与赋值。接下来我们通过一个例子,来看看 Mat 所包含的常用属性。

先创建一个 3*4 的四通道的矩阵,并打印出其相关的属性,稍后会详细解释每个属性的含义。

Mat srcImage(3, 4, CV_16UC4, Scalar_<uchar>(1, 2, 3, 4));cout << srcImage << endl;cout << "dims:" << srcImage.dims << endl;
cout << "rows:" << srcImage.rows << endl;
cout << "cols:" << srcImage.cols << endl;
cout << "channels:" << srcImage.channels() << endl;
cout << "type:" << srcImage.type() << endl;
cout << "depth:" << srcImage.depth() << endl;
cout << "elemSize:" << srcImage.elemSize() << endl;
cout << "elemSize1:" << srcImage.elemSize1() << endl;
cout << "step:" << srcImage.step << endl;
cout << "step[0]:" << srcImage.step[0] << endl;
cout << "step[1]:" << srcImage.step[1] << endl;
cout << "step1[0]:" << srcImage.step1(0) << endl;
cout << "step1[1]:" << srcImage.step1(1) << endl;

输出结果:

[1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4;1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4;1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]
dims:2
rows:3
cols:4
channels:4
type:26
depth:2
elemSize:8
elemSize1:2
step:32
step[0]:32
step[1]:8
step1[0]:16
step1[1]:4

在上述例子中我们打印了 Mat 的很多属性,它们主要包括:

  • rows: 表示图像的高度。

  • cols:表示图像的宽度。

  • dims:表示矩阵的维度。

  • data:表示 Mat 对象中的指针(uchar 类型的指针),指向内存中存放矩阵数据的一块内存 (uchar* data)。

  • channels:表示通道数量;例如常见的 RGB、HSV 彩色图像,则 channels=3;若为灰度图,则 channels=1。

  • depth:表示图像的深度,它用来度量每一个像素中每一个通道的精度,它本身与通道数无关,它的数值越大表示精度越高。

数据类型depth 的值数据类型取值范围对应 C++ 的类型
CV_8U08 位无符号类型0—255uchar,  unsigned char
CV_8S18 位有符号类型-128—127char
CV_16U216 位无符号类型0—65535ushort, unsigned short, unsigned short int
CV_16S316 位有符号类型-32768—32767short, short int
CV_32S432 位整数数据类型-2147483648—2147483647int, long
CV_32F532 位浮点数类型±(1.18e-38……3.40e38)float
CV_64F632 位双精度类型±(2.23e-308……1.79e308)double
  • type:表示矩阵的数据类型,它包含矩阵中元素的类型以及通道数信息。

数据类型1234
CV_8UCV_8UC1CV_8UC2CV_8UC3CV_8UC4
CV_8SCV_8SC1CV_8SC2CV_8SC3CV_8SC4
CV_16UCV_16UC1CV_16UC2CV_16UC3CV_16UC4
CV_16SCV_16SC1CV_16SC2CV_16SC3CV_16SC4
CV_32SCV_32SC1CV_32SC2CV_32SC3CV_32SC4
CV_32FCV_32FC1CV_32FC2CV_32FC3CV_32FC4
CV_64FCV_64FC1CV_64FC2CV_64FC3CV_64FC4
  • elemSize:表示矩阵中每一个元素的数据大小,它与通道数相关,单位是字节。 举几个例子: 如果 Mat 中的数据类型是 CV_8UC1 或 CV_8SC1,那么 elemSize=1(1 * 8 / 8 = 1 bytes); 如果 Mat 中的数据类型是 CV_8UC3 或 CV_8SC3,那么 elemSize=3(3 * 8 / 8 = 3 bytes); 如果 Mat 中的数据类型是 CV_16UC3 或 CV_16SC3,那么 elemSize=6(3 * 16 / 8 = 6 bytes); 如果 Mat 中的数据类型是 CV_32SC3 或 CV_32FC3,那么 elemSize=12(3 * 32 / 8 = 12 bytes);

  • elemSize1:表示矩阵中每一个元素单个通道的数据大小,单位是字节。满足:

  • step: 字面意思是“步长”,实际上它描述了矩阵的形状。 step[] 为一个数组,矩阵有几维,step[] 数组就有几个元素。以一个三维矩阵为例,step[0] 表示一个平面的字节总数,step[1] 表示一行元素的字节总数,step[2] 表示每一个元素的字节总数。

在 OpenCV 的官方文档中,关于解释 step 时曾提到矩阵数据元素

的地址

对于我们常用的二维数组,上述公式可化简为:

这里的 step[0] 表示一行元素的字节总数,step[1] 表示每一个元素的字节总数。

b0ec7e951bab533cd242f5163b09871c.jpeg
mat.png
  • step1:  step1 也是一个数组。step1 不再以字节为单位,而是以 elemSize1 为单位,满足:

Part22. 图像的像素操作

22.1 像素的类型

我们最常用的图像是二维数组,灰度图像(CV_8UC1)会存放 C++ 的 uchar 类型,RGB 彩色图像一般会存放 Vec3b 类型。

其中,单通道数据存放格式:061bed490799cb6ea99a30e4dfa20705.jpeg

三通道数据存放格式:cf92ff6d908931eaf945c6f308bb2f13.jpeg

对于彩色图像而言,在 OpenCV 中通道的顺序是 B、G、R,这跟我们通常所说的 RGB 三原色正好相反。

当然,灰度图像也不一定都是 CV_8UC1 类型,也可能是 CV_16SC1、CV_32FC1 等,它们会存放 C++ 的 short、float 等基本类型。类似地,彩色图像也可能是 CV_16SC3、CV_32FC3 等,那它们是怎么存放的呢?

OpenCV 定义了一系列的 Vec 类,它是一个一维的向量,代表像素的类型

typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4b;typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vec4s;typedef Vec<ushort, 2> Vec2w;
typedef Vec<ushort, 3> Vec3w;
typedef Vec<ushort, 4> Vec4w;typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vec4i;
typedef Vec<int, 6> Vec6i;
typedef Vec<int, 8> Vec8i;typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6d;

其中 b、s、w、i、f、d 分别表示如下的含义:


数据类型
bunsigned char
sshort int
wunsigned short
iint
ffloat
ddouble

Vec 类又被称为固定向量类,在编译时就知道向量的大小。类似 Vec 这样的类还有:Matx、Point、Size、Rect

我们用一张表,总结一下矩阵中的数据类型和像素的类型的对应关系:

数据类型C1C2C3C4C6
CV_8UucharVec2bVec3bVec4b
CV_8ScharVec<char, 2>Vec<char, 3>Vec<char, 4>
CV_16UushortVec2wVec3wVec4w
CV_16SshortVec2sVec3sVec4s
CV_32SintVec2iVec3iVec4i
CV_32FfloatVec2fVec3fVec4fVec6f
CV_64FdoubleVec2dVec3dVec4dVec6d

基于上述表格我们可以回答刚才的问题,CV_16SC3 类型的图像存放的是 Vec3s 类型,CV_32FC3 类型的图像存放的是 Vec3f 类型。

32.2 像素点的读取

Mat 的 at() 函数实现了对矩阵中的某个像素的读写操作

下面的代码展示了 at() 函数对灰度图像像素的读写:

Scalar value = grayImage.at<uchar>(y, x);
Scalar.at<uchar>(y, x) = 128;

三通道彩色的图像的读取:

Vec3b value = image.at<Vec3b>(y, x);uchar blue = value.val[0];
uchar green = value.val[1];
uchar red = value.val[2];

三通道彩色图像的赋值:

image.at<Vec3b>(y,x)[0]=128;
image.at<Vec3b>(y,x)[1]=128;
image.at<Vec3b>(y,x)[2]=128;

下面的例子结合像素的类型,展示了将加载的图像转换成灰度图像,以及对灰度图像进行取反的操作。

Mat srcImage = imread("/Users/tony/beautiful.jpg");
if (srcImage.empty())
{cout << "could not load image ..." << endl;return -1;
}
imshow("src", srcImage);Mat grayImage;
cvtColor(srcImage, grayImage, COLOR_BGR2GRAY); // 灰度处理
imshow("gray",grayImage);int height = grayImage.rows;
int width  = grayImage.cols;for (int row=0; row<height; row++)
{for (int col=0; col<width; col++){int gray = grayImage.at<uchar>(row, col);grayImage.at<uchar>(row, col) = 255- gray;}
}imshow("invert", grayImage);
1925bc3571edae4d8e4ecd159d5d671c.jpeg
像素点操作.png

简单提一下,上述例子中 cvtColor() 函数的作用是将图像从一个颜色空间转换到另一个颜色空间。例如,可以将图像从 BGR 色彩空间转换成灰度色彩空间,或者从 BGR 色彩空间转换成 HSV 色彩空间等等。

42.3 图像的遍历

2.3.1 基于数组遍历

前面 2.2 介绍过 at() 函数可以对某个像素进行读写操作,并用例子展示了对单通道进行遍历。

对于三通道的彩色图像可以这样遍历。

for(int i=0;i<srcImage.rows;i++){for(int j=0;j<srcImage.cols;j++){srcImage.at<Vec3b>(i,j)[0]=...  //B通道srcImage.at<Vec3b>(i,j)[1]=...  //G通道srcImage.at<Vec3b>(i,j)[2]=...  //R通道}
}

2.3.2 基于指针遍历

Mat 类提供了更高效的 ptr() 函数,它可以得到图像任意行首地址

下面的代码,它返回第 i+1 行的首地址,也就是指向第 i+1 行第一个元素的指针。

uchar* data = srcImage.ptr<uchar>(i);

at() 函数跟 ptr() 函数在使用上有一定的区别:

at<类型>(i,j) 

ptr<类型>(i)

当然,使用 ptr()  函数访问某个像素也是可以的,采用如下的方式:

mat.ptr<type>(row)[col]

它返回的是 <> 中的模板类型指针,指向的是第 row+1 行 col+1 列的元素。

对于单通道图像的遍历:

for(int i=0;i<srcImage.rows;i++){uchar* data=srcImage.ptr<uchar>(i);for(int j=0;j<srcImage.cols;j++){data[j]=...}
}

对于三通道图像的遍历:

for(int i=0;i<srcImage.rows;i++){Vec3b* data=srcImage.ptr<Vec3b>(i);for(int j=0;j<srcImage.cols;j++){data[j][0]=...  //B通道data[j][1]=...  //G通道data[j][2]=...  //R通道}
}

2.3.3 基于迭代器遍历

C++ STL 对每个集合类都定义了对应的迭代器类,OpenCV 也提供了 cv::Mat 的迭代器类,并且与 C++ STL 中的标准迭代器兼容。

对于单通道图像的遍历:

Mat_<uchar>::iterator begin = srcImage.begin<uchar>();
Mat_<uchar>::iterator end = srcImage.end<uchar>();for (auto it = begin; it != end; it++)
{*it = ...
}

迭代器 Mat_ 是 Mat 的模版子类,它重载了 operator() 让我们可以更方便的取图像上的点。类似的迭代器还有 Matlterator_。

对于三通道图像的遍历:

Mat_<cv::Vec3b>::iterator begin = srcImage.begin<cv::Vec3b>();
Mat_<cv::Vec3b>::iterator end = srcImage.end<cv::Vec3b>();for (auto it = begin; it != end; it++)
{(*it)[0] = ... //B通道(*it)[1] = ... //G通道(*it)[2] = ... //R通道
}

使用迭代器遍历图像会便捷一些,但是效率没有使用指针的效率高。

52.3.4 基于 LUT 遍历

LUT (LOOK -UP-TABLE) 意为查找表。

在数据结构中,查找表是由同一类型的 数据元素 构成的集合,它是一种以查找为“核心”,同时包括其他运算的非常灵活的数据结构。

在图像处理中,经常会通过事先建立一张查找表对图像进行映射。

例如,将灰度图由某个区间映射到另一个区间,或者将单通道映射到三通道。它们都是以像素灰度值作为索引,以灰度值映射后的数值作为表中的内容,通过索引号与映射后的输出值建立联系。

一般灰度图像会有 0-255 个灰度值,有时我们不需要这么精确的灰度级,例如黑白图像。下面我们来展示如何建立一个 LUT,将 64 到 196 之间的灰度值变成 0,其余变成 1。

Mat lut(1, 256, CV_8U);
for (int i = 0; i < 256; i++)
{if (i > 64 and i < 196){lut.at<uchar>(i) = 0;}else{lut.at<uchar>(i) = i;}
}

从上述代码可以看出,通过改变图像中像素的灰度值,LUT 可以降低灰度级提高运算速度。

LUT 只适用于 CV_8U 类型的图像。

当然,查找表并不一定都是单通道的。

  • 如果输入图像为单通道,那么查找表为单通道

  • 如果输入图像为三通道,那么查找表可以为单通道或者三通道

使用 LUT 进行遍历,采用的是颜色空间缩减的方式:把 unsigned char 类型的值除以一个 int 类型的值,得到仍然是一个 char 类型的数值。

我们采用如下的公式:

其中,Q 表示量化级别,当 Q= 10 时则灰度值 1-10 用灰度值 1 表示,灰度值 11-20 用灰度值 11 表示,以此类推。256 个灰度值的灰度图像可以用 26 个数值表示,那么彩色的图像就可以用 26 * 26 * 26 个数值表示,比原先小了很多。

#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>using namespace std;
using namespace cv;#define QUAN_VAL1          10
#define QUAN_VAL2          20
#define QUAN_VAL3          100void createLookupTable(Mat& table, uchar quanVal)
{table.create(1,256,CV_8UC1);uchar *p = table.data;for(int i = 0; i < 256; ++i){p[i] = quanVal*(i/quanVal); // 颜色缩减运算}
}int main()
{Mat srcImage = imread("/Users/tony/beautiful.jpg");if (srcImage.empty()){cout << "could not load image ..." << endl;return -1;}imshow("src", srcImage); // 原图Mat table,dst1,dst2,dst3;createLookupTable(table, QUAN_VAL1);LUT(srcImage, table, dst1);createLookupTable(table, QUAN_VAL2);LUT(srcImage, table, dst2);createLookupTable(table, QUAN_VAL3);LUT(srcImage, table, dst3);imshow("dst1", dst1); // Q=10imshow("dst2", dst2); // Q=20imshow("dst3", dst3); // Q=100waitKey(0);return 0;
}
90c433dda869d33d1fa5fa71fde7ce70.jpeg
lut.png

上述例子在创建查找表时,遍历了矩阵的每一个像素以及运用颜色空间缩减的运算公式。并且分别展示了原图、Q=10、Q=20、Q=100 的图片。可以看到当 Q = 100 时,图像压缩得比较厉害丢失了很多信息。

Part33. 图像像素值的统计

63.1 均值与标准差

均值和标准差是统计学的概念。

均值的公式:

标准差公式:

在图像处理中,它们能帮助我们了解图像通道中像素值的分布情况。均值表示图像整体的亮暗程度,图像的均值越大则表示图像越亮。标准差表示图像中明暗变化的对比程度,标准差越大表示图像中明暗变化越明显。

在图像分析的时候,我们通过图像像素值的统计,可以对图像的有效信息作出判断。当标准差很小时,图像所携带的有效信息会很少,便于我们判断这是否是我们所需要的图像。说一个题外话,曾经我看到过一段很震惊的代码,某同事写的判断传送带上手机是否亮屏。当时的代码可能是为了偷懒,只通过判断图像的均值,当均值超过某个阈值时就认为手机是亮屏的。后来我接手后,当即做了大量的修改。

下面举个例子,通过 meanStdDev() 函数获取图像的均值和标准差,以及每个通道的均值和标准差。

Mat srcImage = imread("/Users/tony/beautiful.jpg");
if (srcImage.empty())
{cout << "could not load image ..." << endl;return -1;
}
imshow("src", srcImage);Mat mean, stddev;
meanStdDev(srcImage, mean, stddev);
std::cout << "mean:" << std::endl << mean << std::endl;
std::cout << "stddev:" << std::endl<< stddev << std::endl;
printf("blue channel mean:%.2f, stddev: %.2f \n", mean.at<double>(0, 0), stddev.at<double>(0, 0));
printf("green channel mean:%.2f, stddev: %.2f \n", mean.at<double>(1, 0), stddev.at<double>(1, 0));
printf("red channel mean:%.2f, stddev: %.2f \n", mean.at<double>(2, 0), stddev.at<double>(2, 0));

输出结果:

mean:
[91.28189117330051;104.7030620995939;118.9715339648672]
stddev:
[77.24017058254671;79.5424883584348;83.89088339080149]
blue channel mean:91.28, stddev: 77.24 
green channel mean:104.70, stddev: 79.54 
red channel mean:118.97, stddev: 83.89

Part44. 总结

本文过一个简单的例子,介绍了 Mat 经常使用的属性和方法。后续还介绍了像素的类型和多种图像遍历的方式、像素值的统计。

在几种图像遍历方式中,除了 LUT 遍历外,其他的几种方式它们的效率从高到低依次为:指针 > 迭代器 > 数组。在实际生产环境中,我们经常会用指针遍历的方式

本文介绍的内容是对前面一篇文章内容的补充,它们都是 OpenCV 最基础的内容,接下来的文章会经常使用这些内容。本文还引申出了 LUT 以及图像像素值的统计, 特别是均值和标准差它们在图像预处理中经常用到。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/112530.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

安装Sentinel

大家好今天来安装Sentinel . 安装Sentinel 下载 : 大家可以选择相应版本(最新版本1.8.6) 官网下载地址 : Release v1.8.6 alibaba/Sentinel GitHub 链接&#xff1a;Sentinel_免费高速下载|百度网盘-分享无限制 (baidu.com) 提取码&#xff1a;8eh9 运行 : 将jar包放到任…

Youtrack Linux 安装

我们考虑最后应该使用的是 ZIP 方式的安装。 按照官方的说法如何设置运行 YouTrack 应该是非常简单的。 准备环境 根据官方的说法&#xff0c;我们需要做的就是下载 Zip 包&#xff0c;然后把 Zip 包解压到指定的目录中就可以了。 下载 当前官方的下载地址为&#xff1a;Ge…

基于nodejs+vue中学信息技术线上学习系统

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;…

单片机郭天祥(02)

1&#xff1a;解决keil5软件的乱码问题&#xff0c;修改编码为UTF-8 2&#xff1a;打开keil5使用debug对编写好的程序进行调试 给程序打上断点 使用仿真芯片 更改设备管理器相关设置 接通电源后点击debug连接到51单片机 使用stc-isp获取延时函数 将延时函数添加进入创建好的…

17-spring aop调用过程概述

文章目录 1.源码2. debug过程 1.源码 public class TestAop {public static void main(String[] args) throws Exception {saveGeneratedCGlibProxyFiles(System.getProperty("user.dir") "/proxy");ApplicationContext ac new ClassPathXmlApplication…

在JavaScript中,如何创建一个数组或对象?

在JavaScript中,可以使用以下方式创建数组和对象: 一:创建数组(Array): 1:使用数组字面量(Array Literal)语法,使用方括号 [] 包裹元素,并用逗号分隔: let array1 = []; // 空数组 let array2 = [1, 2, 3]; // 包含三个数字的数组 let array3 = [apple, banana,…

Nautilus Chain 与 Coin98 生态达成合作,加速 Zebec 生态亚洲战略进程

目前&#xff0c;行业内首个模块化 Layer3 架构公链 Nautilus Chain 已经上线主网&#xff0c;揭示了模块化区块链领域迎来了全新的进程。在主网上线后&#xff0c;Nautilus Chain 将扮演 Zebec 生态中最重要的底层设施角色&#xff0c;并将为 Zebec APP 以及 Zebec Payroll 规…

ESP32C3 LuatOS TM1650②动态显示累加整数

--注意:因使用了sys.wait()所有api需要在协程中使用 -- 用法实例 PROJECT "ESP32C3_TM1650" VERSION "1.0.0" _G.sys require("sys") local tm1650 require "tm1650"-- 拆分整数&#xff0c;并把最低位数存放在数组最大索引处 loc…

用Nginx搭建一个具备缓存功能的反向代理服务

在同一台服务器上&#xff0c;使用nginx提供服务&#xff0c;然后使用openresty提供反向代理服务。 参考《Ubuntu 20.04使用源码安装nginx 1.14.0》安装nginx。 参考《用Nginx搭建一个可用的静态资源Web服务器》搭建静态资源Web服务器&#xff0c;但是/nginx/conf/nginx.conf里…

Uniapp软件库源码 全新带勋章功能(包含前后端源码)

Uniapp软件库全新带勋章功能&#xff0c;搭建好后台 在前端找到 util 这个文件 把两个js文件上面的填上自己的域名&#xff0c; 电脑需要下载&#xff1a;HBuilderX 登录账号 没有账号就注册账号&#xff0c;然后上传文件&#xff0c;打包选择 “发行” 可以打包app h5等等。…

异常数据检测 | Python基于Hampel的离群点检测

文章目录 文章概述模型描述源码分享文章概述 在时间序列数据分析领域,识别和处理异常点是至关重要的任务。异常点或离群点是明显偏离预期模式的数据点,可能表明存在错误、欺诈或有价值的见解。 应对这一挑战的一种有效技术是汉普尔过滤器(Hampel Filter)。 模型描述 汉…

spark获取hadoop服务token

spark 作业一直卡在accepted 问题现象问题排查1.查看yarn app日志2.问题分析与原因 问题现象 通过yarn-cluster模式提交spark作业&#xff0c;客户端日志一直卡在submit app&#xff0c;没有运行 问题排查 1.查看yarn app日志 appid已生成&#xff0c;通过yarn查看app状态为…

Note——torch.size() umr_maximum() array.max() itertools.product()

torch.size Problem TypeError: ‘torch.Size’ object is not callable Reason Analysis torch.Size函数不可调用 因为torch只可以.size() 或 shape Solution 将y.shape()替换为y.size() 或 y.shape ytorch.normal(0,0.01,y.size())2 return umr_maximum(a, axis, None…

uniapp接入萤石微信小程序插件

萤石官方提供了一些适用于uniapp / 小程序的方案 如 小程序半屏 hls rtmp 等 都TM有坑 文档写的依托答辩 本文参考了uniapp小程序插件 以及 萤石微信小程序插件接入文档 效果如下 1. 插件申请 登录您的小程序微信公众平台&#xff0c;点击左侧菜单栏&#xff0c;进入设置页…

盒式交换机堆叠配置

目录 1.配置环形拓扑堆叠 2.设备组建堆叠 3.设备组件堆叠 堆叠 istack&#xff0c;是指将多台支持堆叠特性的交换机设备组合在一起&#xff0c;从逻辑上组合成一台交换设备。如图所示&#xff0c;SwitchA与 SwitchB 通过堆叠线缆连接后组成堆叠 istack&#xff0c;对于上游和…

百度地图API:JavaScript开源库几何运算判断点是否在多边形内(电子围栏)

百度地图JavaScript开源库&#xff0c;是一套基于百度地图API二次开发的开源的代码库。目前提供多个lib库&#xff0c;帮助开发者快速实现在地图上添加Marker、自定义信息窗口、标注相关开发、区域限制设置、几何运算、实时交通、检索与公交驾车查询、鼠标绘制工具等功能。 判…

网站批量替换关键词方法

注意替换操作之前先对文件做好备份 1.下载http://downinfo.myhostadmin.net/ultrareplace5.02.rar 解压出来,运行UltraReplace.exe 2.点击菜单栏中的配置&#xff0c;全选所有文件类型,或者根据自己的需求选择部分,如htm、html、php、asp等 3.若替换单个文件,点击文件,若是要…

html 按钮点击倒计时,限制不可点击

html 按钮点击倒计时&#xff0c;限制不可点击 e94cbabd25cfc7f3f53a50a235734c22.jpg <!DOCTYPE html> <html><head><meta http-equiv"Content-Type" content"text/html; charsetutf-8" /><title></title></head&…

飞速(FS)MTP®光纤跳线系列——数据中心布线理想选择

数据中心的重要定位要求其使用的光纤跳线具有高性能和高可靠性。飞速&#xff08;FS&#xff09;MTP光纤产品系列能够以简单的安装方式快速部署高密度链路&#xff0c;优化线缆管理&#xff0c;确保充分利用通道空间&#xff0c;显著减少安装时间和成本。 飞速&#xff08;FS&…

02_diffusion_models_from_scratch_CN

从零开始的扩散模型 有时&#xff0c;只考虑一些事务最简单的情况会有助于更好地理解其工作原理。我们将在本笔记本中尝试这一点&#xff0c;从“玩具”扩散模型开始&#xff0c;看看不同的部分是如何工作的&#xff0c;然后再检查它们与更复杂的实现有何不同。 我们将学习 …