ZKP学习笔记
ZK-Learning MOOC课程笔记
Lecture 3: Programming ZKPs (Guest Lecturers: Pratyush Mishra and Alex Ozdemir)
3.3 Using a library (+ tutorial)
- R1CS Libraries
- A library in a host language (Eg: Rust, OCaml, C++, Go, …)
- Key type: constraint system
- Maintains state about R1CS constraints and variables
- Key operations:
- create variable
- create linear combinations of variables
- add constraint
- ConstraintSystem Operations
//Variable creation
cs.add_var(p, v) → id//Linear Combination creation
cs.zero()
lc.add(c, id) → lc_
//lc_ := lc + c * id//Adding constraints
cs.constrain(lcA, lcB, lcC)
//Adds a constraint lcA × lcB = lcC
- Arkworks Tutorial
// main.rs
use ark_ff::PrimeField;
use ark_r1cs_std::{prelude::{Boolean, EqGadget, AllocVar},uint8::UInt8
};
use ark_relations::r1cs::{SynthesisError, ConstraintSystem};
use cmp::CmpGadget;mod cmp;
mod alloc;pub struct Puzzle<const N: usize, ConstraintF: PrimeField>([[UInt8<ConstraintF>; N]; N]);
pub struct Solution<const N: usize, ConstraintF: PrimeField>([[UInt8<ConstraintF>; N]; N]);fn check_rows<const N: usize, ConstraintF: PrimeField>(solution: &Solution<N, ConstraintF>,
) -> Result<(), SynthesisError> {for row in &solution.0 {for (j, cell) in row.iter().enumerate() {for prior_cell in &row[0..j] {cell.is_neq(&prior_cell)?.enforce_equal(&Boolean::TRUE)?;}}}Ok(())
}fn check_puzzle_matches_solution<const N: usize, ConstraintF: PrimeField>(puzzle: &Puzzle<N, ConstraintF>,solution: &Solution<N, ConstraintF>,
) -> Result<(), SynthesisError> {for (p_row, s_row) in puzzle.0.iter().zip(&solution.0) {for (p, s) in p_row.iter().zip(s_row) {// Ensure that the solution `s` is in the range [1, N]s.is_leq(&UInt8::constant(N as u8))?.and(&s.is_geq(&UInt8::constant(1))?)?.enforce_equal(&Boolean::TRUE)?;// Ensure that either the puzzle slot is 0, or that// the slot matches equivalent slot in the solution(p.is_eq(s)?.or(&p.is_eq(&UInt8::constant(0))?)?).enforce_equal(&Boolean::TRUE)?;}}Ok(())
}fn check_helper<const N: usize, ConstraintF: PrimeField>(puzzle: &[[u8; N]; N],solution: &[[u8; N]; N],
) {let cs = ConstraintSystem::<ConstraintF>::new_ref();let puzzle_var = Puzzle::new_input(cs.clone(), || Ok(puzzle)).unwrap();let solution_var = Solution::new_witness(cs.clone(), || Ok(solution)).unwrap();check_puzzle_matches_solution(&puzzle_var, &solution_var).unwrap();check_rows(&solution_var).unwrap();assert!(cs.is_satisfied().unwrap());
}fn main() {use ark_bls12_381::Fq as F;// Check that it accepts a valid solution.let puzzle = [[1, 0],[0, 2],];let solution = [[1, 2],[1, 2],];check_helper::<2, F>(&puzzle, &solution);// Check that it rejects a solution with a repeated number in a row.let puzzle = [[1, 0],[0, 2],];let solution = [[1, 0],[1, 2],];check_helper::<2, F>(&puzzle, &solution);
}// cmp.rs
use ark_ff::PrimeField;
use ark_r1cs_std::{prelude::{Boolean, EqGadget}, R1CSVar, uint8::UInt8, ToBitsGadget};
use ark_relations::r1cs::SynthesisError;pub trait CmpGadget<ConstraintF: PrimeField>: R1CSVar<ConstraintF> + EqGadget<ConstraintF> {#[inline]fn is_geq(&self, other: &Self) -> Result<Boolean<ConstraintF>, SynthesisError> {// self >= other => self == other || self > other// => !(self < other)self.is_lt(other).map(|b| b.not())}#[inline]fn is_leq(&self, other: &Self) -> Result<Boolean<ConstraintF>, SynthesisError> {// self <= other => self == other || self < other// => self == other || other > self// => self >= otherother.is_geq(self)}#[inline]fn is_gt(&self, other: &Self) -> Result<Boolean<ConstraintF>, SynthesisError> {// self > other => !(self == other || self < other)// => !(self <= other)self.is_leq(other).map(|b| b.not())}fn is_lt(&self, other: &Self) -> Result<Boolean<ConstraintF>, SynthesisError>;
}impl<ConstraintF: PrimeField> CmpGadget<ConstraintF> for UInt8<ConstraintF> {fn is_lt(&self, other: &Self) -> Result<Boolean<ConstraintF>, SynthesisError> {// Determine the variable mode.if self.is_constant() && other.is_constant() {let self_value = self.value().unwrap();let other_value = other.value().unwrap();let result = Boolean::constant(self_value < other_value);Ok(result)} else {let diff_bits = self.xor(other)?.to_bits_be()?.into_iter();let mut result = Boolean::FALSE;let mut a_and_b_equal_so_far = Boolean::TRUE;let a_bits = self.to_bits_be()?;let b_bits = other.to_bits_be()?;for ((a_and_b_are_unequal, a), b) in diff_bits.zip(a_bits).zip(b_bits) {let a_is_lt_b = a.not().and(&b)?;let a_and_b_are_equal = a_and_b_are_unequal.not();result = result.or(&a_is_lt_b.and(&a_and_b_equal_so_far)?)?;a_and_b_equal_so_far = a_and_b_equal_so_far.and(&a_and_b_are_equal)?;}Ok(result)}}
}#[cfg(test)]
mod test {use ark_r1cs_std::{prelude::{AllocationMode, AllocVar, Boolean, EqGadget}, uint8::UInt8};use ark_relations::r1cs::{ConstraintSystem, SynthesisMode};use ark_bls12_381::Fr as Fp;use itertools::Itertools;use crate::cmp::CmpGadget;#[test]fn test_comparison_for_u8() {let modes = [AllocationMode::Constant, AllocationMode::Input, AllocationMode::Witness];for (a, a_mode) in (0..=u8::MAX).cartesian_product(modes) {for (b, b_mode) in (0..=u8::MAX).cartesian_product(modes) {let cs = ConstraintSystem::<Fp>::new_ref();cs.set_mode(SynthesisMode::Prove { construct_matrices: true });let a_var = UInt8::new_variable(cs.clone(), || Ok(a), a_mode).unwrap();let b_var = UInt8::new_variable(cs.clone(), || Ok(b), b_mode).unwrap();if a < b {a_var.is_lt(&b_var).unwrap().enforce_equal(&Boolean::TRUE).unwrap();a_var.is_leq(&b_var).unwrap().enforce_equal(&Boolean::TRUE).unwrap();a_var.is_gt(&b_var).unwrap().enforce_equal(&Boolean::FALSE).unwrap();a_var.is_geq(&b_var).unwrap().enforce_equal(&Boolean::FALSE).unwrap();} else if a == b {a_var.is_lt(&b_var).unwrap().enforce_equal(&Boolean::FALSE).unwrap();a_var.is_leq(&b_var).unwrap().enforce_equal(&Boolean::TRUE).unwrap();a_var.is_gt(&b_var).unwrap().enforce_equal(&Boolean::FALSE).unwrap();a_var.is_geq(&b_var).unwrap().enforce_equal(&Boolean::TRUE).unwrap();} else {a_var.is_lt(&b_var).unwrap().enforce_equal(&Boolean::FALSE).unwrap();a_var.is_leq(&b_var).unwrap().enforce_equal(&Boolean::FALSE).unwrap();a_var.is_gt(&b_var).unwrap().enforce_equal(&Boolean::TRUE).unwrap();a_var.is_geq(&b_var).unwrap().enforce_equal(&Boolean::TRUE).unwrap();}assert!(cs.is_satisfied().unwrap(), "a: {a}, b: {b}");}}}
}//alloc.rs
use std::borrow::Borrow;use ark_ff::PrimeField;
use ark_r1cs_std::{prelude::{AllocVar, AllocationMode}, uint8::UInt8};
use ark_relations::r1cs::{Namespace, SynthesisError};use crate::{Puzzle, Solution};impl<const N: usize, F: PrimeField> AllocVar<[[u8; N]; N], F> for Puzzle<N, F> {fn new_variable<T: Borrow<[[u8; N]; N]>>(cs: impl Into<Namespace<F>>,f: impl FnOnce() -> Result<T, SynthesisError>,mode: AllocationMode,) -> Result<Self, SynthesisError> {let cs = cs.into();let row = [(); N].map(|_| UInt8::constant(0));let mut puzzle = Puzzle([(); N].map(|_| row.clone()));let value = f().map_or([[0; N]; N], |f| *f.borrow());for (i, row) in value.into_iter().enumerate() {for (j, cell) in row.into_iter().enumerate() {puzzle.0[i][j] = UInt8::new_variable(cs.clone(), || Ok(cell), mode)?;}}Ok(puzzle)}
} impl<const N: usize, F: PrimeField> AllocVar<[[u8; N]; N], F> for Solution<N, F> {fn new_variable<T: Borrow<[[u8; N]; N]>>(cs: impl Into<Namespace<F>>,f: impl FnOnce() -> Result<T, SynthesisError>,mode: AllocationMode,) -> Result<Self, SynthesisError> {let cs = cs.into();let row = [(); N].map(|_| UInt8::constant(0));let mut solution = Solution([(); N].map(|_| row.clone()));let value = f().map_or([[0; N]; N], |f| *f.borrow());for (i, row) in value.into_iter().enumerate() {for (j, cell) in row.into_iter().enumerate() {solution.0[i][j] = UInt8::new_variable(cs.clone(), || Ok(cell), mode)?;}}Ok(solution)}
}
3.4 Using a compiler (+ tutorial)
- HDLs & Circuit Libraries
- Difference: Host language v. custom language
- Similarities: explicit wire creation (explicitly wire values); explicit constraint creation
- ZoKrates Tutorial
struct Puzzle<N> {u8[N][N] elems;
}
struct Solution<N> {u8[N][N] elems;
}def check_rows<N>(Solution<N> sol) -> bool {// for each rowfor u32 i in 0..N {// for each columnfor u32 j in 0..N {// Check that the (i, j)-th element is not equal to any of the// the elements preceding it in the same row.for u32 k in 0..j {assert(sol.elems[i][j] != sol.elems[i][k]);}}}return true;
}def check_puzzle_matches_solution<N>(Solution<N> sol, Puzzle<N> puzzle) -> bool {for u32 i in 0..N {for u32 j in 0..N {assert((sol.elems[i][j] > 0) && (sol.elems[i][j] < 10));assert(\(puzzle.elems[i][j] == 0) ||\(puzzle.elems[i][j] == sol.elems[i][j])\);}}return true;
}def main(public Puzzle<2> puzzle, private Solution<2> sol) {assert(check_puzzle_matches_solution(sol, puzzle));assert(check_rows(sol));
}
3.5 An overview of prominent ZKP toolchains
- Toolchain Type
-
Other toolchains
-
Shared Compiler Infrastructure
- CirC: https://github.com/circify/circ
- CirC: https://github.com/circify/circ