竞赛选题 深度学习YOLO安检管制物品识别与检测 - python opencv

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 卷积神经网络
  • 4 Yolov5
  • 5 模型训练
  • 6 实现效果
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习YOLO安检管制误判识别与检测 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

军事信息化建设一直是各国的研究热点,但我国的武器存在着种类繁多、信息散落等问题,这不利于国防工作提取有效信息,大大妨碍了我军信息化建设的步伐。同时,我军武器常以文字、二维图片和实体武器等传统方式进行展示,交互性差且无法满足更多军迷了解武器性能、近距离观赏或把玩武器的迫切需求。本文将改进后的Yolov5算法应用到武器识别中,将武器图片中的武器快速识别出来,提取武器的相关信息,并将其放入三维的武器展现系统中进行展示,以期让人们了解和掌握各种武器,有利于推动军事信息化建设。

2 实现效果

检测展示
在这里插入图片描述

3 卷积神经网络

简介

卷积神经网络 (CNN)
是一种算法,将图像作为输入,然后为图像的所有方面分配权重和偏差,从而区分彼此。神经网络可以通过使用成批的图像进行训练,每个图像都有一个标签来识别图像的真实性质(这里是猫或狗)。一个批次可以包含十分之几到数百个图像。

对于每张图像,将网络预测与相应的现有标签进行比较,并评估整个批次的网络预测与真实值之间的距离。然后,修改网络参数以最小化距离,从而增加网络的预测能力。类似地,每个批次的训练过程都是类似的。
在这里插入图片描述

相关代码实现

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)

4 Yolov5

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:
在这里插入图片描述

网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

Mosaic数据增强
:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错
在这里插入图片描述

基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述
在这里插入图片描述

FPN+PAN的结构
在这里插入图片描述
这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:

==>40×40×255==>20×20×255==>10×10×255

在这里插入图片描述

  • 相关代码

      class Detect(nn.Module):stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.zeros(1)] * self.nl  # init gridself.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use in-place ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_grid
    

5 模型训练

训练效果如下
在这里插入图片描述
相关代码

#部分代码
def train(hyp, opt, device, tb_writer=None):print(f'Hyperparameters {hyp}')log_dir = tb_writer.log_dir if tb_writer else 'runs/evolve'  # run directorywdir = str(Path(log_dir) / 'weights') + os.sep  # weights directoryos.makedirs(wdir, exist_ok=True)last = wdir + 'last.pt'best = wdir + 'best.pt'results_file = log_dir + os.sep + 'results.txt'epochs, batch_size, total_batch_size, weights, rank = \opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.local_rank# TODO: Use DDP logging. Only the first process is allowed to log.# Save run settingswith open(Path(log_dir) / 'hyp.yaml', 'w') as f:yaml.dump(hyp, f, sort_keys=False)with open(Path(log_dir) / 'opt.yaml', 'w') as f:yaml.dump(vars(opt), f, sort_keys=False)# Configurecuda = device.type != 'cpu'init_seeds(2 + rank)with open(opt.data) as f:data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dicttrain_path = data_dict['train']test_path = data_dict['val']nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names'])  # number classes, namesassert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check# Remove previous resultsif rank in [-1, 0]:for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):os.remove(f)# Create modelmodel = Model(opt.cfg, nc=nc).to(device)# Image sizesgs = int(max(model.stride))  # grid size (max stride)imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples# Optimizernbs = 64  # nominal batch size# default DDP implementation is slow for accumulation according to: https://pytorch.org/docs/stable/notes/ddp.html# all-reduce operation is carried out during loss.backward().# Thus, there would be redundant all-reduce communications in a accumulation procedure,# which means, the result is still right but the training speed gets slower.# TODO: If acceleration is needed, there is an implementation of allreduce_post_accumulation# in https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/run_pretraining.pyaccumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizinghyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decaypg0, pg1, pg2 = [], [], []  # optimizer parameter groupsfor k, v in model.named_parameters():if v.requires_grad:if '.bias' in k:pg2.append(v)  # biaseselif '.weight' in k and '.bn' not in k:pg1.append(v)  # apply weight decayelse:pg0.append(v)  # all elseif opt.adam:optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentumelse:optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decayoptimizer.add_param_group({'params': pg2})  # add pg2 (biases)print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))del pg0, pg1, 

6 实现效果

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/111033.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++中cin、cin.get()、cin.getline()、getline() 的区别】

文章目录 引入cin基本用法输入多个变量换行符存放在缓冲区中 cin.get()基本用法重载函数换行符残留在缓冲区中 cin.getline()基本使用重载函数换行符不会残留在缓冲区中 string 流中的 getline()总结用法总结几个输入实例输入格式输入格式输入格式输入格式 输出格式 写在最后 引…

大模型技术实践(五)|支持千亿参数模型训练的分布式并行框架

在上一期的大模型技术实践中,我们介绍了增加式方法、选择式方法和重新参数化式方法三种主流的参数高效微调技术(PEFT)。微调模型可以让模型更适合于我们当前的下游任务,但当模型过大或数据集规模很大时,单个加速器&…

Hadoop3教程(七):MapReduce概述

文章目录 (68) MR的概述&优缺点(69)MR的核心思想MapReduce进程 (70)官方WC源码&序列化类型(71)MR的编程规范MapperReducerDriver (72)WordCount案例需…

OpenCV16-图像连通域分析

OpenCV16-图像连通域分析 1.图像连通域分析2.connectedComponents3.connectedComponentsWithStatus 1.图像连通域分析 连通域是指图像中具有相同像素值并且位置相邻的像素组成的区域。连通域分析是指在图像中寻找彼此互相独立的连通域并将其标记出来。 4邻域与8邻域的概念&am…

梯度下降算法(Gradient Descent)

GD 梯度下降法的含义是通过当前点的梯度(偏导数)的反方向寻找到新的迭代点,并从当前点移动到新的迭代点继续寻找新的迭代点,直到找到最优解,梯度下降的目的,就是为了最小化损失函数。 1、给定待优化连续可微…

PRCV 2023:语言模型与视觉生态如何协同?合合信息瞄准“多模态”技术

近期,2023年中国模式识别与计算机视觉大会(PRCV)在厦门成功举行。大会由中国计算机学会(CCF)、中国自动化学会(CAA)、中国图象图形学学会(CSIG)和中国人工智能学会&#…

分享一个比对图片是否一致的小工具(来源: github)

运行效果图: 官网: GitHub - codingfishman/image-diff: 一个方便的图片对比工具一个方便的图片对比工具. Contribute to codingfishman/image-diff development by creating an account on GitHub.https://github.com/codingfishman/image-diff 优缺点: 1.采用比对各色块是…

从一道面试题开始学习C++标准库提供的并发编程工具

一个空列表,用两个函数(只可调用一次)轮流写入值(一个写奇数,一个写偶数), 最终实现列表的值为1-100,有序排列。 简单分析:假设这两个函数分别为A和B,A函数往…

Sqoop技术文档笔记

Sqoop是一个用于在Hadoop和关系型数据库之间传输数据的开源工具。它可以将结构化数据从关系型数据库(如MySQL、Oracle、SQL Server等)导入到Hadoop的分布式文件系统(HDFS)或hive中,并且可以将数据从HDFS、hive导出到关…

安装VSCode,提升工作效率!iPad Pro生产力进阶之路

文章目录 前言1. 本地环境配置2. 内网穿透2.1 安装cpolar内网穿透(支持一键自动安装脚本)2.2 创建HTTP隧道 3. 测试远程访问4. 配置固定二级子域名4.1 保留二级子域名4.2 配置二级子域名 5. 测试使用固定二级子域名远程访问6. iPad通过软件远程vscode6.1 创建TCP隧道 7. ipad远…

mac 启动mysql Error: Failure while executing; `/bin/launchctl bootstrap gui/501

Error: Failure while executing; /bin/launchctl bootstrap gui/501 /Users/<myUserName>/Library/LaunchAgents/homebrew.mxcl.mysql8.0.plist exited with 5.homebrew 给的提示看不到具体消息 查看 homebrew.mxcl.mysql8.0.plist文件&#xff0c;能看到具体的启动命令…

Netty使用SslHandler实现加密通信-双向认证篇

“不积跬步&#xff0c;无以至千里。” 说明 其实Netty使用SslHandler实现加密通信单向认证和双向认证在代码上区别不大&#xff0c;下面是双向认证的代码示例 引入依赖 <dependency><groupId>io.netty</groupId><artifactId>netty-all</artifac…

webrtc基于DTLS的端口复用技术

DTLS协议: DTLS(Datagram Transport Layer Security)数据包安全传输协议,用于在不可靠的数据包传输协议上(如UDP)提供数据的安全传输。 UDP多路复用: 一个UDP多路复用&#xff0c;被用来处理共享同一个UDP端口的多个并发的UDT连接。类似同一个tcp port上创建多个socket connec…

【复盘】主从延迟以及 Waiting for tablemetadata lock 线上问题

背景 今晚DBA给一个大表添加索引&#xff0c;1000多W&#xff0c;正好风控系统这个时间段有查询这个表的请求&#xff0c;于是就出现了复制延迟。 这是正常下的延迟 可以看出基本都是是100毫秒以下。 Waiting for tablemetadata lock&#xff0c;并且业务跑的SQL出现锁等待…

append_ocr_trainf

read_image (Image, D:/图像文件/字符识别/1-1.bmp) access_channel (Image, Image1, 1) * draw_rectangle2 (3600, Row, Column, Phi, Length1, Length2) gen_rectangle2 (Rectangle, 96.0436, 715.9526, 0.0173917050943654, 110.186941, 18.041084) reduce_domain (Image1, …

多线程处理文件集合,先拆分,在执行

try {File file new File(path);File[] files file.listFiles();log.info("当前共有文件 "files.length"个");List<File> filesList new ArrayList<>(Arrays.asList(files));List<List<File>> dividedLists SplitListUtils.sp…

[笔记] 十进制转n进制

思路 n对 xa取模&#xff0c;就是xa-1 位上的数字&#xff0c;因为模出来的数不足xa 举例来说就是5&211&#xff0c;这个1就是20位上的1 当前位取完后&#xff0c;n/xa&#xff0c;表示n将对x(a1)进行取模&#xff08;进入下一位&#xff09; 重复此操作直至n0。 代码实现 …

开发者职场“生存状态”大调研报告分析 - 第四版

听人劝、吃饱饭,奉劝各位小伙伴,不要订阅该文所属专栏。 作者:不渴望力量的哈士奇(哈哥),十余年工作经验, 跨域学习者,从事过全栈研发、产品经理等工作,现任研发部门 CTO 。荣誉:2022年度博客之星Top4、博客专家认证、全栈领域优质创作者、新星计划导师,“星荐官共赢计…

.mxdown-V-XXXXXXXX勒索病毒感染后的下一步:恢复您的文件

引言&#xff1a; 在数字时代&#xff0c;计算机用户日益面临着来自网络犯罪分子的各种威胁&#xff0c;其中包括勒索病毒&#xff0c;如.mxdown-V-XXXXXXXX。这种勒索病毒可以对你的个人和商业数据文件进行加密&#xff0c;并要求支付赎金才能解锁它们。本文91数据恢复将介绍…

矩阵键盘中断扫描

/*----------------------------------------------- 内容&#xff1a;如计算器输入数据形式相同 从右至左 使用行列扫描方法 中断方式可以有效提供cpu工作效率&#xff0c;在有按键动作时才扫描&#xff0c;平时不进行扫描工作 -------------------------------------…