交通目标检测-行人车辆检测流量计数 - 计算机竞赛

文章目录

  • 0 前言
  • 1\. 目标检测概况
    • 1.1 什么是目标检测?
    • 1.2 发展阶段
  • 2\. 行人检测
    • 2.1 行人检测简介
    • 2.2 行人检测技术难点
    • 2.3 行人检测实现效果
    • 2.4 关键代码-训练过程
  • 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 毕业设计 交通目标检测-行人车辆检测流量计数

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1. 目标检测概况

1.1 什么是目标检测?

目标检测,粗略来说就是:输入图片/视频,经过处理,得到:目标的位置信息(比如左上角和右下角的坐标)、目标的预测类别、目标的预测置信度(confidence)。

1.2 发展阶段

  1. 手工特征提取算法,如VJ、HOG、DPM

  2. R-CNN算法(2014),最早的基于深度学习的目标检测器之一,其结构是两级网络:

  • 1)首先需要诸如选择性搜索之类的算法来提出可能包含对象的候选边界框;
  • 2)然后将这些区域传递到CNN算法进行分类;
  1. R-CNN算法存在的问题是其仿真很慢,并且不是完整的端到端的目标检测器。

  2. Fast R-CNN算法(2014末),对原始R-CNN进行了相当大的改进:提高准确度,并减少执行正向传递所花费的时间。
    是,该模型仍然依赖于外部区域搜索算法。

  3. faster R-CNN算法(2015),真正的端到端深度学习目标检测器。删除了选择性搜索的要求,而是依赖于

  • (1)完全卷积的区域提议网络(RPN, Region Purpose Network),可以预测对象边界框和“对象”分数(量化它是一个区域的可能性的分数)。
  • (2)然后将RPN的输出传递到R-CNN组件以进行最终分类和标记。
  1. R-CNN系列算法,都采取了two-stage策略。特点是:虽然检测结果一般都非常准确,但仿真速度非常慢,即使是在GPU上也仅获得5 FPS。

  2. one-stage方法有:yolo(2015)、SSD(2015末),以及在这两个算法基础上改进的各论文提出的算法。这些算法的基本思路是:均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,然后利用CNN提取特征后直接进行分类与回归。
    整个过程只需要一步,所以其优势是速度快,但是训练比较困难。

  3. yolov3(2018)是yolo作者提出的第三个版本(之前还提过yolov2和它们的tinny版本,tinny版本经过压缩更快但是也降低了准确率)。

2. 行人检测

这里学长以行人检测作为例子来讲解目标检测。

2.1 行人检测简介

行人检测( Pedestrian
Detection)一直是计算机视觉研究中的热点和难点。行人检测要解决的问题是:找出图像或视频帧中所有的行人,包括位置和大小,一般用矩形框表示,和人脸检测类似,这也是典型的目标检测问题。

行人检测技术有很强的使用价值,它可以与行人跟踪,行人重识别等技术结合,应用于汽车无人驾驶系统(ADAS),智能机器人,智能视频监控,人体行为分析,客流统计系统,智能交通等领域。

2.2 行人检测技术难点

由于人体具有相当的柔性,因此会有各种姿态和形状,其外观受穿着,姿态,视角等影响非常大,另外还面临着遮挡
、光照等因素的影响,这使得行人检测成为计算机视觉领域中一个极具挑战性的课题。行人检测要解决的主要难题是:

  • 外观差异大:包括视角,姿态,服饰和附着物,光照,成像距离等。从不同的角度看过去,行人的外观是很不一样的。处于不同姿态的行人,外观差异也很大。由于人穿的衣服不同,以及打伞、戴帽子、戴围巾、提行李等附着物的影响,外观差异也非常大。光照的差异也导致了一些困难。远距离的人体和近距离的人体,在外观上差别也非常大。

  • 遮挡问题: 在很多应用场景中,行人非常密集,存在严重的遮挡,我们只能看到人体的一部分,这对检测算法带来了严重的挑战。

  • 背景复杂:无论是室内还是室外,行人检测一般面临的背景都非常复杂,有些物体的外观和形状、颜色、纹理很像人体,导致算法无法准确的区分。

  • 检测速度:行人检测一般采用了复杂的模型,运算量相当大,要达到实时非常困难,一般需要大量的优化。

2.3 行人检测实现效果

在这里插入图片描述

检测到行人后还可以做流量分析:

在这里插入图片描述

2.4 关键代码-训练过程

import cv2import numpy as npimport randomdef load_images(dirname, amout = 9999):img_list = []file = open(dirname)img_name = file.readline()while img_name != '':  # 文件尾img_name = dirname.rsplit(r'/', 1)[0] + r'/' + img_name.split('/', 1)[1].strip('\n')img_list.append(cv2.imread(img_name))img_name = file.readline()amout -= 1if amout <= 0: # 控制读取图片的数量breakreturn img_list# 从每一张没有人的原始图片中随机裁出10张64*128的图片作为负样本def sample_neg(full_neg_lst, neg_list, size):random.seed(1)width, height = size[1], size[0]for i in range(len(full_neg_lst)):for j in range(10):y = int(random.random() * (len(full_neg_lst[i]) - height))x = int(random.random() * (len(full_neg_lst[i][0]) - width))neg_list.append(full_neg_lst[i][y:y + height, x:x + width])return neg_list# wsize: 处理图片大小,通常64*128; 输入图片尺寸>= wsizedef computeHOGs(img_lst, gradient_lst, wsize=(128, 64)):hog = cv2.HOGDescriptor()# hog.winSize = wsizefor i in range(len(img_lst)):if img_lst[i].shape[1] >= wsize[1] and img_lst[i].shape[0] >= wsize[0]:roi = img_lst[i][(img_lst[i].shape[0] - wsize[0]) // 2: (img_lst[i].shape[0] - wsize[0]) // 2 + wsize[0], \(img_lst[i].shape[1] - wsize[1]) // 2: (img_lst[i].shape[1] - wsize[1]) // 2 + wsize[1]]gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)gradient_lst.append(hog.compute(gray))# return gradient_lstdef get_svm_detector(svm):sv = svm.getSupportVectors()rho, _, _ = svm.getDecisionFunction(0)sv = np.transpose(sv)return np.append(sv, [[-rho]], 0)# 主程序# 第一步:计算HOG特征neg_list = []pos_list = []gradient_lst = []labels = []hard_neg_list = []svm = cv2.ml.SVM_create()pos_list = load_images(r'G:/python_project/INRIAPerson/96X160H96/Train/pos.lst')full_neg_lst = load_images(r'G:/python_project/INRIAPerson/train_64x128_H96/neg.lst')sample_neg(full_neg_lst, neg_list, [128, 64])print(len(neg_list))computeHOGs(pos_list, gradient_lst)[labels.append(+1) for _ in range(len(pos_list))]computeHOGs(neg_list, gradient_lst)[labels.append(-1) for _ in range(len(neg_list))]# 第二步:训练SVMsvm.setCoef0(0)svm.setCoef0(0.0)svm.setDegree(3)criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 1000, 1e-3)svm.setTermCriteria(criteria)svm.setGamma(0)svm.setKernel(cv2.ml.SVM_LINEAR)svm.setNu(0.5)svm.setP(0.1)  # for EPSILON_SVR, epsilon in loss function?svm.setC(0.01)  # From paper, soft classifiersvm.setType(cv2.ml.SVM_EPS_SVR)  # C_SVC # EPSILON_SVR # may be also NU_SVR # do regression tasksvm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))# 第三步:加入识别错误的样本,进行第二轮训练# 参考 http://masikkk.com/article/SVM-HOG-HardExample/hog = cv2.HOGDescriptor()hard_neg_list.clear()hog.setSVMDetector(get_svm_detector(svm))for i in range(len(full_neg_lst)):rects, wei = hog.detectMultiScale(full_neg_lst[i], winStride=(4, 4),padding=(8, 8), scale=1.05)for (x,y,w,h) in rects:hardExample = full_neg_lst[i][y:y+h, x:x+w]hard_neg_list.append(cv2.resize(hardExample,(64,128)))computeHOGs(hard_neg_list, gradient_lst)[labels.append(-1) for _ in range(len(hard_neg_list))]svm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))# 第四步:保存训练结果hog.setSVMDetector(get_svm_detector(svm))hog.save('myHogDector.bin')

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/110922.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在前端html页面中向服务器发送post登录请求

目录 前言 搭建服务器 搭建前端登录页面 获取表单值 使用axios发送post登录请求 前言 一般在html页面中向服务器发送post请求的模块为登录请求&#xff0c;本文将介绍如何向服务器发送post请求 搭建服务器 如何搭建服务器请看JWT认证这篇文章&#xff0c;有详细的解说。…

SpringCloud学习笔记-gateway网关自定义全局过滤器

需求&#xff1a;定义全局过滤器&#xff0c;拦截请求&#xff0c;判断请求的参数是否满足下面条件&#xff1a; 参数中是否有authorization&#xff0c; authorization参数值是否为admin 如果同时满足则放行&#xff0c;否则拦截 实现&#xff1a; 在gateway中定义一个过…

《SQLi-Labs》04. Less 23~28a

title: 《SQLi-Labs》04. Less 23~28a date: 2023-10-19 19:37:40 updated: 2023-10-19 19:38:40 categories: WriteUp&#xff1a;Security-Lab excerpt: 联合注入&#xff0c;注释符过滤绕过之构造闭合&#xff0c;%00 截断、二次注入、报错注入&#xff0c;空格过滤绕过&…

【Java基础面试二十四】、String类有哪些方法?

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a;String类有哪些方法&…

欧科云链研究院:人类或将成为仅次于AI第二聪明物种?Web3不允许

出品&#xff5c;欧科云链研究院 在 AI行业“掘金买铲”的英伟达&#xff0c;60%的红杉投资在AI相关领域&#xff0c;之前只专注Web3的顶级VC&#xff0c;Paradigm 正在从转向人工智能等 "前沿 "技术。 资本的追逐让AI迷人且危险。 OKG RESEARCH IN FT AI教父Geoffre…

并发容器(Map、List、Set)实战及其原理

一. JUC包下的并发容器 Java的集合容器框架中&#xff0c;主要有四大类别&#xff1a;List、Set、Queue、Map&#xff0c;大家熟知的这些集合类ArrayList、LinkedList、HashMap这些容器都是非线程安全的。 所以&#xff0c;Java先提供了同步容器供用户使用。 同步容器可以简单地…

深入了解RPA业务流程自动化的关键要素

在RPA业务流程自动化实施过程中&#xff0c;哪些因素起着至关重要的作用&#xff1f;这其实没有一个通用的答案&#xff0c;每一个RPA业务流程自动化的部署&#xff0c;都需要结合具体场景去调整&#xff0c;并且进行全面的规划。 首当其冲是要关注以下几点&#xff1a; 1、专…

AutoGPT:自动化GPT原理及应用实践

一、AutoGPT介绍 想象一下&#xff0c;生活在这样一个世界里&#xff0c;你有一个人工智能助手&#xff0c;它不仅能够理解你的需求&#xff0c;而且还能够与你一起学习与成长。人工智能已无缝融入我们工作、生活&#xff0c;并帮助我们有效完成各种目标。大模型技术的发展与应…

Unity之ShaderGraph如何模拟水波实现顶点波动

前言 今天我们实现类似水波纹的顶点波动效果 如下所示&#xff1a; 主要节点 Tilling And Offset&#xff1a;分别通过输入Tiling和Offset平铺和偏移输入UV的值。这通常用于细节贴图和随时间滚动的纹理。 Gradient Noise&#xff1a;根据输入UV生成梯度或Perlin噪声。生成…

【扩散模型】如何用最几毛钱生成壁纸

通过学习扩散模型了解到了统计学的美好&#xff0c;然后顺便记录下我之前文生图的基础流程~ 扩散模型简介 这次是在DataWhale的组队学习里学习的&#xff0c;HuggingFace开放扩散模型学习地址 扩散模型训练时通过对原图增加高斯噪声&#xff0c;在推理时通过降噪来得到原图&…

【UE4 材质编辑篇】1.0 shader编译逻辑

UE4新手&#xff0c;学起来&#xff08;&#xff09;文章仅记录自己的思考。 参考&#xff1a;虚幻4渲染编程(材质编辑器篇)【第一卷&#xff1a;开篇基础】 - 知乎 (zhihu.com) 开篇基础就摸不着头脑&#xff0c;原因是此前完全没有摸过UE4&#xff0c;一点一点记录吧&#x…

25台兰博基尼跑车赛道巡游!泡泡玛特MOLLY攒的局就是这么拉风

入秋以来气温逐渐转冷&#xff0c;但泡泡玛特的市场活动却持续升温&#xff1a;国内首个潮玩行业沉浸式IP主题乐园泡泡玛特城市乐园正式开园&#xff1b;2023PTS上海国际潮流玩具展&#xff1b;入驻美国第二大商场、布里斯班再拓新店等海外布局步伐不停……将广大消费者的身心带…

解决电脑出现msvcp140.dll丢失问题,msvcp140.dll丢失的详细解决方法

在我们日常使用电脑的过程中&#xff0c;可能会遇到各种问题&#xff0c;其中之一就是MSVCCP140.DLL文件缺失。这个文件是Microsoft Visual C 2015 Redistributable的一部分&#xff0c;通常用于支持一些软件或游戏运行。如果这个文件丢失或损坏&#xff0c;可能会导致程序无法…

SpringBoot集成Lettuce客户端操作Redis

目录 一、前言二、基础集成配置&#xff08;redis单节点&#xff09;2.1、POM2.2、添加配置文件application.yml2.3、编写配置文件2.4、编写启动类2.5、编写测试类测试是否连接成功 一、前言 spring-boot-starter-data-redis有两种实现 lettuce 和 jedis&#xff0c;spring bo…

手机应用app打开游戏显示连接服务器失败是什么原因?排查解决方案?

亲爱的同学们&#xff0c;有时候我们在使用手机设备时&#xff0c;可能会遇到一个很头疼的问题——连接服务器失败。这个问题不仅让我们感到困扰&#xff0c;还影响到了我们的用户体验。那么&#xff0c;我们究竟能如何解决这个问题呢&#xff1f;今天&#xff0c;笔者就和大家…

罗技鼠标接收器丢失或损坏后用另一个接收器配对的方法

本文介绍罗技鼠标在丢失、损坏其自身原有的接收器后&#xff0c;将另一个新的接收器与原有鼠标相互配对的方法。 在开始之前&#xff0c;大家需要首先查看两个内容&#xff1a;首先是原有的鼠标——大家需要查看自己的鼠标&#xff08;罗技键盘也是同样的操作&#xff09;底部&…

使用轮廓分数提升时间序列聚类的表现

我们将使用轮廓分数和一些距离指标来执行时间序列聚类实验&#xff0c;并且进行可视化 让我们看看下面的时间序列: 如果沿着y轴移动序列添加随机噪声&#xff0c;并随机化这些序列&#xff0c;那么它们几乎无法分辨&#xff0c;如下图所示-现在很难将时间序列列分组为簇: 上面…

Java_Jdbc

目录 一.JDBC概述 二.JDBC API 三.ResultSet[结果集] 四.Statement 五.PreparedStatement 六. JDBC API 总结 一.JDBC概述 JDBC 为访问不同的数据库提供了同一的接口&#xff0c;为使用着屏蔽了细节问题Java程序员使用JDBC 可以连接任何提供了 JDBC驱动的数据库系统&am…

【ES实战】ES主副分片数据不一致分析

ES主副分片数据不一致分析 文章目录 ES主副分片数据不一致分析问题描述问题重现问题分析修复方案 问题描述 在请求索引中的某一条数据时&#xff0c;时而查询有结果&#xff0c;时而无结果。两种情况交替出现。 问题重现 通过对问题数据的点查&#xff0c;确实重现了该现象 …

Redis常见面试题总结

Redis(Remote Dictionary Server) 由Salvator Sanfilippo在2009年开源的使用 ANSI C 语言编写、高性能、遵守 BSD 协议、支持网络、可基于内存亦可持久化的日志型、Key-Value 数据库&#xff0c;并提供多种语言的 API 的非关系型数据库。 与传统数据库不同的是 Redis 的数据是存…