文章目录
- (121)ETL数据清洗案例
- 参考文献
(121)ETL数据清洗案例
ETL,即Extract-Transform-Load的缩写,用来描述数据从源端,经过抽取(Extract)、转换(transform),最后加载(load)到目标端的处理过程。
ETL主要应用于数据仓库,但不只是应用于数据仓库,毕竟这个更像是一类思想。
在运行核心的MR程序之前,往往要对数据进行清理,清除掉不符合用户要求的数据,比如说空数据等。这个清理的过程就可以通过启动一个Mapper来实现,不需要运行Reducer。
接下来,教程还是以一个实际需求案例展开描述:去除日志中字段个数小于等于11的日志。
输入数据:一个web.log文件;
输出数据:每行字段长度都大于11;
核心思想很简单,就是map()中编写好规则后,对输入的数据进行过滤清洗,再输出就行。
过程实现也很简单,过了一遍代码,直接贴在下面:
编写WebLogMapper类
package com.atguigu.mapreduce.weblog;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;public class WebLogMapper extends Mapper<LongWritable, Text, Text, NullWritable>{@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {// 1 获取1行数据String line = value.toString();// 2 解析日志boolean result = parseLog(line,context);// 3 日志不合法退出if (!result) {return;}// 4 日志合法就直接写出context.write(value, NullWritable.get());}// 2 封装解析日志的方法private boolean parseLog(String line, Context context) {// 1 截取String[] fields = line.split(" ");// 2 日志长度大于11的为合法if (fields.length > 11) {return true;}else {return false;}}
}
编写WebLogDriver类
package com.atguigu.mapreduce.weblog;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class WebLogDriver {public static void main(String[] args) throws Exception {// 输入输出路径需要根据自己电脑上实际的输入输出路径设置args = new String[] { "D:/input/inputlog", "D:/output1" };// 1 获取job信息Configuration conf = new Configuration();Job job = Job.getInstance(conf);// 2 加载jar包job.setJarByClass(LogDriver.class);// 3 关联mapjob.setMapperClass(WebLogMapper.class);// 4 设置最终输出类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(NullWritable.class);// 设置reducetask个数为0job.setNumReduceTasks(0);// 5 设置输入和输出路径FileInputFormat.setInputPaths(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));// 6 提交boolean b = job.waitForCompletion(true);System.exit(b ? 0 : 1);}
}
参考文献
- 【尚硅谷大数据Hadoop教程,hadoop3.x搭建到集群调优,百万播放】