游戏中的随机——“动态平衡概率”算法

前言

众所周知计算机模拟的随机是伪随机,但在结果看来依然和现实中的随机差别不大。
例如掷硬币,连续掷很多很多次之后,总有连续七八十来次同一个面朝上的情况出现,计算机中一般的随机函数也能很好模拟这一点。

但在游戏中,假如有一个50%概率会出现的情况,经常连续七八十来次不出现,这样其实非常影响游戏体验。

那么为了增加这部分游戏体验,我们如何避免上述情况发生,使某个概率能在总体上较为均匀地分布呢?

例如现在有这样的需求:

A. 暴击率总体为20%
B. 要求每十次攻击,至少有一次暴击
C. 要求暴击的总体分布较为均匀

算法预览

经过一段时间的深思熟虑,笔者终于构建了一种名为“动态平衡概率”的算法。
虽然它还有一些局限性,但已经达到了基本可用的状态。

先上代码,为了方便演示图表,这里就用 python 了:

import matplotlib.pyplot as plt
import random# 初始化变量
InitCritPercent = 0.2       # 初始暴击率
dynamicCritPercent = 0.2    # 动态暴击率
currentCritPercent = 0      # 当前暴击概率
deltaCritPercent = 0        # 当前暴击率与初始暴击率的差值(用来表示变化)
attackTotalCount = 0        # 总攻击次数
critTotalCount = 0          # 总暴击次数
noCritStreakCount = 0       # 连续未暴击次数# 给 plot 准备的列表
currentCritPercentList = []
deltaCritPercentList = []
dynamicCritPercentList = []
noCritStreakCountList = []
isCriticalList = []# 获取最佳的 N
def find_optimal_N(p):one_minus_p = 1 - pfor i in range(1, 501):if one_minus_p ** i <= 0.05:return ireturn 500  # 如果未找到合适的 N,则默认返回 500# 测试 10000 次
for i in range(10000):# 核心代码 ↓attackTotalCount += 1isCritical = False# 检查当前攻击数是否大于 0if attackTotalCount > 0:# 计算当前暴击概率currentCritPercent = critTotalCount / attackTotalCount# 计算当前暴击概率与初始暴击率的差值deltaCritPercent = InitCritPercent - currentCritPercent# 计算动态暴击率dynamicCritPercent = (attackTotalCount * deltaCritPercent + currentCritPercent) * pow(abs(deltaCritPercent), 0.5)# 检查是否连续 N - 1 次未暴击if noCritStreakCount < find_optimal_N(InitCritPercent) - 1:percent = random.random()if percent <= dynamicCritPercent:isCritical = TruenoCritStreakCount = 0else:noCritStreakCount += 1else:isCritical = TruenoCritStreakCount = 0if isCritical:critTotalCount += 1# 核心代码 ↑# 将数据添加到列表中currentCritPercentList.append(currentCritPercent)deltaCritPercentList.append(deltaCritPercent)dynamicCritPercentList.append(dynamicCritPercent)noCritStreakCountList.append(noCritStreakCount)isCriticalList.append(int(isCritical))# 创建多表格
fig, axs = plt.subplots(2)# 每 100 条数据标注一下
for i in range(0, len(currentCritPercentList), 100):axs[0].annotate(f"{currentCritPercentList[i]:.3f}", (i, currentCritPercentList[i]))# 画出暴击概率数据表格
axs[0].plot(currentCritPercentList, label='Current Crit Percent', color='r')
axs[0].plot(deltaCritPercentList, label='Delta Crit Percent', color='g')
axs[0].plot(dynamicCritPercentList, label='Dynamic Crit Percent', color='b')
axs[0].set_xlabel('Total Attacks')
axs[0].set_ylabel('Probability')
axs[0].legend()# 画出连续未暴击次数的表格
axs[1].plot(noCritStreakCountList, label='No-Crit Streak', color='m')
axs[1].plot(isCriticalList, label='Is Critical', color='c')
axs[1].set_xlabel('Total Attacks')
axs[1].set_ylabel('No-Crit Streak / Is Critical')
axs[1].legend()plt.show()

给定参数的运行结果如下图所示(这里的“要求N次攻击,至少有一次暴击”中的N,根据算法取了14)
反向 目标0.2 次数14 倍率差值开平方 无限制1
0 ~ 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述
可以看出,总体暴击率会在大概300次内稳定下来,并且逐渐逼近 0.2;
在攻击次数足够多时,“动态暴击率”的浮动也会趋于稳定。

这是一种通过调整每次攻击的暴击率,来达到动态平衡效果的算法;
也可以说,这是一种动态调整每次概率,以达到目标数学期望的算法。

核心思路

以“暴击率”为例,以下是这种“动态平衡概率”算法的核心思路:

基本参数:
初始概率(目标概率) : P 动态概率 : d y n a m i c P 当前概率 : c u r r e n t P 概率差值 : d e l t a P 攻击次数 : a t t a c k N 暴击次数 : c r i t N 连续未暴击次数 : n o C r i t S t r e a k \begin{align*} \text{初始概率(目标概率)} & :P \\ \text{动态概率} & :dynamicP \\ \text{当前概率} & :currentP \\ \text{概率差值} & :deltaP \\ \text{攻击次数} & :attackN \\ \text{暴击次数} & :critN \\ \text{连续未暴击次数} & :noCritStreak \\ \end{align*} 初始概率(目标概率)动态概率当前概率概率差值攻击次数暴击次数连续未暴击次数PdynamicPcurrentPdeltaPattackNcritNnoCritStreak

核心运算逻辑:
c u r r e n t P = c r i t N a t t a c k N d e l t a P = P − c u r r e n t P d y n a m i c P = ( a t t a c k N ⋅ d e l t a P + c u r r e n t P ) ⋅ ∣ d e l t a P ∣ \begin{align*} currentP &= \frac{critN}{attackN} \\ deltaP &= P - currentP \\ dynamicP &= \left( attackN · deltaP + currentP \right) · \sqrt{|deltaP|} \\ \end{align*} currentPdeltaPdynamicP=attackNcritN=PcurrentP=(attackNdeltaP+currentP)deltaP

暴击判断逻辑:
找到一个最佳的N, 用于判断连续 N - 1 次未暴击 : Find_Optimal_N ( p ) : ( 1 − p ) N ≤ 0.05 随机数生成和暴击判断 : 如果  n o C r i t S t r e a k < N − 1 ,则生成一个随机数  p e r c e n t ; ﹂如果  p e r c e n t ≤ d y n a m i c P ,则判定为暴击,相关参数 + 1 ﹂否则 未暴击,相关参数 + 1 否则 必然暴击,相关参数 + 1 \begin{align*} \\ \text{找到一个最佳的N,} \\ \text{用于判断连续 N - 1 次未暴击} & : \\ \text{Find\_Optimal\_N}(p) & : (1 - p) ^ N \leq 0.05 \\ \\ \text{随机数生成和暴击判断} & : \\ & \text{如果 \(noCritStreak\) \( < N - 1 \),则生成一个随机数 \(percent\);} \\ & \text{ ﹂如果 \(percent\) \( \leq \) \(dynamicP\),则判定为暴击,相关参数 + 1} \\ & \text{ ﹂否则 未暴击,相关参数 + 1} \\ & \text{否则 必然暴击,相关参数 + 1} \\ \end{align*} 找到一个最佳的N用于判断连续 N - 1 次未暴击Find_Optimal_N(p)随机数生成和暴击判断::(1p)N0.05:如果 noCritStreak <N1,则生成一个随机数 percent ﹂如果 percent  dynamicP,则判定为暴击,相关参数 + 1 ﹂否则 未暴击,相关参数 + 1否则 必然暴击,相关参数 + 1

本文到这里其实就结束了,这套算法虽然简单,但是笔者发现它的过程还是挺有意思的。
感兴趣的朋友可以继续往下看,文末还有一些优化思路…

发现

还是前文中的需求:

A. 暴击率总体为20%
B. 要求每十次攻击,至少有一次暴击
C. 要求暴击的总体分布较为均匀

假如每次暴击的概率都是0.2,并且每十次攻击至少一次暴击,这样相当于增加了总体最终的暴击数,也就是变相增加了暴击率,确实需要通过某种方式将最终结果调整到0.2.

目前笔者想到的实现方式大致分为两种:

一种是“动态概率”,我们可以随着实际已出现的概率,动态地调整下一次的概率,并保证在最终结果上符合我们的目标概率。
另一种是提前将“随机种子”做好。在制作“种子”时使用连续分段的、适当长度的数组,每段数组中目标出现的概率基本相同,且总体概率符合我们的目标概率。再人为打乱每段数组,最后将他们拼接起来。但是这种方式还有个问题,就是打乱数组之后可能会出现两个数组中的一个暴击在头一个在尾,两次暴击又会间隔较远的情况,无法完全保证 B 条件成立。

本文先尝试第一种方式————“动态概率”

以前面的需求为例,假如每次暴击的概率都是0.2,并且每十次攻击至少一次暴击,先这样在Unity中看一下最终的暴击率会高出多少

using UnityEngine;public class CriticalHit : MonoBehaviour
{// 初始暴击率public float InitCritPercent = 0.2f;// 当前暴击概率private float currentCritPercent;// 当前总攻击次数private int attackTotalCount = 0;// 当前总暴击过的次数private int critTotalCount = 0;// 连续未出现暴击的次数private int noCritStreakCount = 0;private void Start(){currentCritPercent = InitCritPercent;}private void Update(){// 监听鼠标左键输入if (Input.GetMouseButtonDown(0)){// 测试一次PerformAttack();Debug.Log("当前暴击率:" + currentCritPercent);}if (Input.GetKeyDown(KeyCode.Space)){// 测试一万次for (int i = 0; i < 10000; i++) PerformAttack();}}private void PerformAttack(){attackTotalCount++;bool isCritical = false;if (attackTotalCount > 0){// 计算当前暴击概率 = 总暴击数 / 总攻击数currentCritPercent = (float)critTotalCount / attackTotalCount;}// 检查是否需要强制暴击if (noCritStreakCount < 9){float percent = Random.Range(0f, 1f);if (percent < InitCritPercent){isCritical = true;noCritStreakCount = 0; // 重置计数器}else{noCritStreakCount++;}}else{isCritical = true;noCritStreakCount = 0; // 重置计数器}if (isCritical) critTotalCount++;// 执行攻击,如果 isCritical 为 true,则为暴击if (isCritical)Debug.Log("Critical Hit!");elseDebug.Log("Normal Hit.");}
}

将这个脚本挂到场景中的空物体上,运行游戏,然后按空格键先测试一万次,再点击鼠标左键显示当前的暴击率
用上述方式测试几次,会发现最终的暴击率大概在 22.5% 左右,打印结果如下图所示
在Unity中测试1请添加图片描述

那么这多出来的 2.5% 为什么会是 2.5% 呢,它具体是怎么来的呢,如何避免它产生呢?

带着这样的疑惑,笔者开始尝试进行分析…

排除误差的可能

首先我们要排除这 2.5% 是误差的可能。

假设暴击率为 0.2,不考虑其他的设定和限制,每次测试十万次、共测试三次。
那么正常情况下的输出结果如下图所示
排除误差1
请添加图片描述
误差在 0.2% 左右,这与 2.5% 差别还是很大的,所以基本排除这是误差导致的情况。

探索

为了进一步优化算法,笔者决定结合已有的数据和个人直觉进行改进。

笔者用Python重新编写了一版代码,这样我们不仅可以方便地输出图表进行可视化分析,还能在这个基础上进行后续的代码修改和优化。

import matplotlib.pyplot as plt
import random# 初始化变量
InitCritPercent = 0.2   # 初始暴击率
attackTotalCount = 0    # 总攻击次数
critTotalCount = 0      # 总暴击次数
noCritStreakCount = 0   # 连续未暴击次数# 给 plot 准备的列表
currentCritPercentList = []
noCritStreakCountList = []
isCriticalList = []# 测试 10000 次
for i in range(10000):attackTotalCount += 1isCritical = False# 检查是否连续 9 次未暴击if noCritStreakCount < 9:percent = random.random()if percent <= InitCritPercent:isCritical = TruenoCritStreakCount = 0else:noCritStreakCount += 1else:isCritical = TruenoCritStreakCount = 0if isCritical:critTotalCount += 1# 计算当前暴击概率currentCritPercent = critTotalCount / attackTotalCount# 添加数据到列表中currentCritPercentList.append(currentCritPercent)noCritStreakCountList.append(noCritStreakCount)isCriticalList.append(int(isCritical))# 创建多表格
fig, axs = plt.subplots(2)# 画出暴击概率数据表格
axs[0].plot(currentCritPercentList, label='Current Crit Percent', color='r')
axs[0].set_xlabel('Total Attacks')
axs[0].set_ylabel('Probability')
axs[0].legend()# 每 100 条数据标注一下
for i in range(0, len(currentCritPercentList), 100):axs[0].annotate(f"{currentCritPercentList[i]:.5f}", (i, currentCritPercentList[i]))# 画出连续未暴击次数的表格
axs[1].plot(noCritStreakCountList, label='No-Crit Streak', color='m')
axs[1].plot(isCriticalList, label='Is Critical', color='c')
axs[1].set_xlabel('Total Attacks')
axs[1].set_ylabel('No-Crit Streak / Is Critical')
axs[1].legend()plt.show()

从输出的图表中不难看出,整体的暴击率确实变高了,如下图所示

前 2000 次 如下
无动态概率调整1
8000 ~ 10000 次 如下
请添加图片描述

如要将最终的暴击概率调整回 0.2,那就应该降低“当前暴击概率”,将 B 条件所增加的那部分修正回来。

“递增修正”

将前文的python代码添加几个变量,用来检测当前暴击概率的变化,当前暴击概率高于初始暴击率的时候,就降低动态暴击率,直到将当前暴击率拉回到正常水平;反之亦然。

import matplotlib.pyplot as plt
import random# 初始化变量
InitCritPercent = 0.2       # 初始暴击率
currentCritPercent = 0      # 当前暴击概率
deltaCritPercent = 0        # 当前暴击率与初始暴击率的差值(用来表示变化)
dynamicCritPercent = 0.2    # 动态暴击率
attackTotalCount = 0        # 总攻击次数
critTotalCount = 0          # 总暴击次数
noCritStreakCount = 0       # 连续未暴击次数# 给 plot 准备的列表
currentCritPercentList = []
deltaCritPercentList = []
dynamicCritPercentList = []
noCritStreakCountList = []
isCriticalList = []# 测试 10000 次
for i in range(10000):attackTotalCount += 1isCritical = False# 检查是否连续 9 次未暴击if attackTotalCount > 0:# 计算当前暴击概率currentCritPercent = critTotalCount / attackTotalCount# 计算当前暴击概率与初始暴击率的差值deltaCritPercent = abs(InitCritPercent - currentCritPercent)# 计算动态暴击率if(currentCritPercent > InitCritPercent):dynamicCritPercent -= deltaCritPercentif(currentCritPercent < InitCritPercent):dynamicCritPercent += deltaCritPercent# 检查是否连续 9 次未暴击if noCritStreakCount < 9:percent = random.random()if percent <= dynamicCritPercent:isCritical = TruenoCritStreakCount = 0else:noCritStreakCount += 1else:isCritical = TruenoCritStreakCount = 0if isCritical:critTotalCount += 1# 将数据添加到列表中currentCritPercentList.append(currentCritPercent)deltaCritPercentList.append(deltaCritPercent)dynamicCritPercentList.append(dynamicCritPercent)noCritStreakCountList.append(noCritStreakCount)isCriticalList.append(int(isCritical))# 创建多表格
fig, axs = plt.subplots(2)# 每 100 条数据标注一下
for i in range(0, len(currentCritPercentList), 100):axs[0].annotate(f"{currentCritPercentList[i]:.3f}", (i, currentCritPercentList[i]))# 画出暴击概率数据表格
axs[0].plot(currentCritPercentList, label='Current Crit Percent', color='r')
axs[0].plot(deltaCritPercentList, label='Delta Crit Percent', color='g')
axs[0].plot(dynamicCritPercentList, label='Dynamic Crit Percent', color='b')
axs[0].set_xlabel('Total Attacks')
axs[0].set_ylabel('Probability')
axs[0].legend()# 画出连续未暴击次数的表格
axs[1].plot(noCritStreakCountList, label='No-Crit Streak', color='m')
axs[1].plot(isCriticalList, label='Is Critical', color='c')
axs[1].set_xlabel('Total Attacks')
axs[1].set_ylabel('No-Crit Streak / Is Critical')
axs[1].legend()plt.show()

输出结果如下图所示
累计 目标0.2 次数10 无限制1
前 2000 次 如下
请添加图片描述

可以明显看出动态暴击率在大幅度地反复震荡,并且明显超出了 (0, 1) 的区间;
在震荡的高点时,会出现连续暴击的情况;在震荡的低点时,会出现连续地触发“保底”暴击;
这样虽然能将总体暴击概率稳定在 0.2 左右,但这显然不满足条件 C。

“递增修正”优化

显而易见,当动态暴击率超出 (0, 1) 区间时,就和 0、1 没有区别了
所以可以为它加个简单限幅,例如笔者将动态暴击率的幅度限制在(0.5倍初始暴击率,2倍初始暴击率)之间

# 同上文代码# 测试 10000 次
for i in range(10000):# 同上文代码if attackTotalCount > 0:# 同上文代码# 计算动态暴击率if(currentCritPercent > InitCritPercent):dynamicCritPercent = min(max(dynamicCritPercent - deltaCritPercent, InitCritPercent * 0.5), InitCritPercent * 2)if(currentCritPercent < InitCritPercent):dynamicCritPercent = min(max(dynamicCritPercent + deltaCritPercent, InitCritPercent * 0.5), InitCritPercent * 2)# 检查是否连续 9 次未暴击if noCritStreakCount < 9:# 同上文代码# 同上文代码# 同上文代码

输出结果如下图所示
累计 目标0.2 次数10 限制0.5-2倍1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

现在的算法已经基本可用了,但还需要多尝试才能找到合适的限幅范围。
当限幅范围过大时,概率的分布会变得不均匀;
限幅范围过小时,又会出现无法逼近目标概率(初始暴击率),比较麻烦。

“递增修正”测试

将上述优化过的算法应用到其他情景中,例如掷硬币,每5次投掷至少有一次正面
初始概率(目标概率) = 0.5

# 同上文代码
InitCritPercent = 0.5
dynamicCritPercent = 0.5
# 同上文代码# 测试 10000 次
for i in range(10000):# 同上文代码# 检查是否连续 4 次未掷出正面if noCritStreakCount < 4:# 同上文代码# 同上文代码# 同上文代码

输出结果如下图所示
累计 目标0.5 次数5 限制0.5-2倍1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

可以发现出现连续未正面的次数(连续未暴击次数),又在动态概率的波谷处出现“聚拢”现象,这很好理解:因为我们的限幅有些过大了。
总结下来,这种手动限定幅度的方式效率很低还容易出问题…

那么能不能让它根据自身目前状况,如目标概率、总攻击次数等参数,来动态调整 动态暴击率的增量呢?

“镜像修正”

基于以上思考,笔者希望每次攻击的“动态暴击率”是上次“当前暴击概率”关于“初始暴击率”的镜像,通过这种有针对性的“反向”操作,来将最终暴击率逼近目标值。
于是便有如下代码:

# 初始化变量
InitCritPercent = 0.2       # 初始暴击率
dynamicCritPercent = 0.2    # 动态暴击率
# 同上文代码# 测试 10000 次
for i in range(10000):# 同上文代码if attackTotalCount > 0:# 同上文代码# 计算动态暴击率dynamicCritPercent = attackTotalCount * InitCritPercent - (attackTotalCount - 1) * currentCritPercent# 检查是否连续 9 次未暴击if noCritStreakCount < 9:# 同上文代码# 同上文代码# 同上文代码

输出结果如下图所示
反向 目标0.2 次数10 无限制 无限制1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

虽然能将最终的暴击概率稳定在 0.2,但结果过于平均了!
可以说这种“修正”的操作过于灵敏,导致暴击的分布非常均匀,甚至没有出现连续 9 次以上的未暴击。但这仍不是我们想要的,需要继续优化。

“镜像修正”优化

笔者发现,这种“过于均匀”的分布情况也是因为每次修正幅度过大导致的。
现在要调整这个幅度会比“递增修正”的方法容易很多,只需要让“计算动态暴击率”的结果乘以一个较小的系数即可。

这个系数需要与当前的状态有关,并且是一个越来越小的值。
而在攻击次数越来越多时,currentCritPercent 也会越来越逼近 InitCritPercent 的值,所以 deltaCritPercent 会随着攻击次数的增多越来越小;
(又因为 currentCritPercent 趋向于一个比 InitCritPercent 偏大的值,那么 deltaCritPercent 也会永不为 0)
这里我们就用 deltaCritPercent 来作为系数,目前来看刚好合适。

# 同上文代码# 计算动态暴击率dynamicCritPercent = (attackTotalCount * (InitCritPercent - currentCritPercent) + currentCritPercent) * deltaCritPercent# 同上文代码

输出结果如下图所示
反向 目标0.2 次数10 倍率差值 无限制1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

由于对每次的 dynamicCritPercent 的幅度都做了差不多的限制,可以看到图二中,在前 1000 次左右攻击时,currentCritPercent 逼近目标值的速度很慢。
啧,还差一点…

继续优化!既然 deltaCritPercent 会随着攻击次数增多变得越来越小,那么我们不妨直接将它放大。

# 同上文代码# 计算动态暴击率dynamicCritPercent = (attackTotalCount * (InitCritPercent - currentCritPercent) + currentCritPercent) * pow(deltaCritPercent, 0.5)# 同上文代码

输出结果如下图所示
反向 目标0.2 次数10 倍率差值开平方 无限制1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

以上结果已经基本符合预期。

“镜像修正”测试

掷硬币

下面还是用硬币的例子:掷硬币,每5次投掷至少有一次正面
初始概率(目标概率) = 0.5

# 同上文代码
InitCritPercent = 0.5
dynamicCritPercent = 0.5
# 同上文代码# 测试 10000 次
for i in range(10000):# 同上文代码# 检查是否连续 4 次未掷出正面if noCritStreakCount < 4:# 同上文代码# 同上文代码# 同上文代码

输出结果如下图所示
反向 目标0.5 次数5 倍率差值开平方 无限制1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

也基本符合预期。

掷骰子

再以掷骰子为例:每掷出 15 次至少有一次是 点数 1。

# 同上文代码
InitCritPercent = 0.166667
dynamicCritPercent = 0.166667
# 同上文代码# 测试 10000 次
for i in range(10000):# 同上文代码# 检查是否连续 14 次未掷出正面if noCritStreakCount < 14:# 同上文代码# 同上文代码# 同上文代码

输出结果如下图所示
反向 目标0.166667 次数15 倍率差值开平方 无限制1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

稳定发挥。

优化

目前“镜像修正”算法已经基本可用了,但是虽然叫“镜像”,却已经没有了镜像当初的样子。

不如就直接改名叫“动态平衡概率”算法好了…

算法优化

细心的朋友应该会发现,这套算法在一开始的概率会低于目标概率一些,并且逼近的速度还是慢了些。后期稳定性也没有想象中的高。

笔者目前能想到的继续优化的方式有三种:

1.分段修改 deltaCritPercent 的开根,类似LOD模型替换的感觉;
2.用 log 函数作为 pow() 的第二个参数,然后当次数达到一定值时直接 * deltaCritPercent 就可以了;
3.或者直接 * deltaCritPercent * 2,也不用 pow() 函数了;
4.按目标概率的比例,给“总攻击次数”和“总暴击次数”设置较大的初始值。这样一开始就能得到较为满意的结果,也会相对高效一些。

笔者还没来得及测试性能,如果后续有相关优化会修改本文章,或者发一篇新文章。

关于判断次数

我们感觉到的小概率事件发生的概率通常在 5% 或 1% 以下,通过这两个标准,我们可以很轻松地得出“目标概率为 X 时,操作 N 次至少出现一次目标事件”中的N:

def find_optimal_N(p):# 从 1 到 500for i in range(1, 501):if(1 - p) ** i <= 0.05:return ireturn 500print(find_optimal_N(0.2))
print(find_optimal_N(0.5))
print(find_optimal_N(0.166667))# 输出结果为:
# 14
# 5
# 17

所以当目标概率为 0.2、0.5、0.166667 时,N 比较合适的值为 14、5、17。
当目标概率小于 0.05 时,可以让if(1 - p) ** i <= 0.01:,或者更小。

结语

虽然本算法目前还有待优化,但已经足够应对一些游戏场景。
关于那多出的2.5%的问题,笔者会继续探索,直到找到满意的答案。

如果这篇文章能为你解决问题或带来新的启发,那我会感到非常荣幸!

对于已经在这个领域有丰富经验的大佬们,非常欢迎你们的建议或批评。这不仅能帮助我改进,也能让这篇文章更加完善,从而帮助到更多的人。

感谢你抽出宝贵的时间来阅读这篇文章,如果你觉得有用,也请不吝分享给更多需要的人。

再次感谢,期待我们在知识的海洋里再次相遇!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/109355.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android Studio gradle手动下载配置

项目同步时&#xff0c;有时候会遇到Android Studio第一步下载gradle就是连接失败的问题。 这种情况&#xff0c;我们可以手动去gradle官网下载好gradle文件&#xff0c;放置在Android Studio的缓存目录下&#xff0c;这样AS在同步代码时就会自动解压下载好的文件。 步骤如下&…

6.SNMP报错-Error opening specified endpoint “udp6:[::1]:161“处理

启动SNMP服务 /etc/init.d/snmpd start 出现以下报错信息 [....] Starting snmpd (via systemctl): snmpd.serviceJob for snmpd.service failed because the control process exited with error code. See "systemctl status snmpd.service" and "journalctl…

有什么手机软件能分离人声和音乐?

很多人在制作混剪视频&#xff0c;需要二次创作的时候&#xff0c;就经常会把人声分离、背景音乐伴奏提取出来&#xff0c;然后重新加入自己的创意跟想法。下面就一起来看看如何用手机软件分离人声和音乐的吧&#xff01; 音分轨 一款可以分离人声和背景音乐的手机软件&#x…

eNSP笔记①

关闭范文信息&#xff1a;undo terminal monitor VRP三种试图 "<>"表示用户视图&#xff0c;系统默认的状态。主要用于查询设备基础信息或者状态等&#xff0c;也可以执行保存(save)。 “[]” 表示系统视图&#xff0c;在用户视图下输入system-view进入状态…

R语言进度条:txtProgressBar功能使用方法

R语言进度条使用攻略 在数据处理、建模或其他计算密集型任务中&#xff0c;我们常常会执行一些可能需要很长时间的操作。 在这些情况下&#xff0c;展示一个进度条可以帮助我们了解当前任务的进度&#xff0c;以及大约还需要多长时间来完成&#xff0c;R语言提供了几种简单且灵…

Excel提高工作效率常用功能

定位快捷键使用 CtrlG或者F5 根据不同类别插入空行 例&#xff1a;以下表&#xff0c;以部门为单位&#xff0c;每个部门后插入空白行 部门姓名出勤基本工资岗位津贴公体加班绩效基数工龄应发合计财务部姓名73115002101710财务部姓名11116006003401502363财务部姓名5271000…

maven 编译.../maven-metadata.xml 报错

文章目录 问题解决 问题 突然编译报错: 解决 打开maven的里离线工作模式,感觉就是下载包到本地. 一个是在maven设置里面 或者直接在maven编译的窗口:

游戏设计模式专栏(十二):在Cocos游戏开发中运用代理模式

点击上方亿元程序员关注和★星标 引言 大家好&#xff0c;我是亿元程序员&#xff0c;一位有着8年游戏行业经验的主程。 本系列是《和8年游戏主程一起学习设计模式》&#xff0c;让糟糕的代码在潜移默化中升华&#xff0c;欢迎大家关注分享收藏订阅。 代理模式&#xff08…

HTML 表格及练习

表格 概述 表格是一种二维结构&#xff0c;横行纵列。 由单元格组成。 表格是一种非常“强” 的结构&#xff1a; 每一行有相同的列数&#xff08;单元格&#xff09;&#xff0c;每一列有相同的行数&#xff08;单元格&#xff09; 同一列的单元格&#xff0c;宽度&#…

2023 年值得关注的软件测试趋势(3)

16.云性能工程对业务连续性的影响 检查和改进基于云的应用程序和服务的性能是云性能工程的主要目标&#xff0c;是各种软件测试趋势中云计算的重要组成部分。云提供了无与伦比的可扩展性、灵活性和成本节约&#xff0c;但如果没有适当的性能工程&#xff0c;组织将面临应用程序…

太好上手了!10款常用的可视化工具你一定要知道!

当谈到可视化工具时&#xff0c;有许多常用的工具可供选择。这些工具可以帮助我们将数据转化为易于理解和具有视觉吸引力的图表、图形和仪表板。 以下是10款常用的可视化工具&#xff0c;它们在不同领域和用途中广泛使用。 1. Datainside&#xff1a; Datainside是一款功能强…

Win+L不能锁屏

1、运行WINR&#xff0c;输入REGEDIT&#xff0c;运行注册表&#xff1a; 2、CTRLF&#xff0c;输入查找DisableLockWorkstation 3、双击这个&#xff0c;点十进制&#xff0c;输入0点确认即可。

Confluence 自定义博文列表

1. 概述 Confluence 自有博文列表无法实现列表自定义功能&#xff0c;实现该需求可采用页面中引用博文宏标签控制的方式 2. 实现方式 功能入口&#xff1a; Confluence →指定空间→创建页面 功能说明&#xff1a; &#xff08;1&#xff09;页面引用博文宏 &#xff08;…

基于安卓Android的掌上酒店预订APP

项目介绍 网络的广泛应用给生活带来了十分的便利。所以把掌上酒店预订与现在网络相结合&#xff0c;利用java技术建设掌上酒店预订APP&#xff0c;实现掌上酒店预订的信息化。则对于进一步提高掌上酒店预订发展&#xff0c;丰富掌上酒店预订经验能起到不少的促进作用。 掌上酒…

微信小程序获取手机号和openid

小程序通过wx.login组件会返回一个code&#xff0c;这个code用来获得用户的openid。 小程序写法为&#xff1a; wx.login({success (res) {if (res.code) {//发起网络请求wx.request({url: https://example.com/onLogin,// 后台给的请求地址data: {code: res.code}})} else {…

游戏录屏怎么录自己的声音?看这篇就够了!

在游戏过程中&#xff0c;录制屏幕是很重要的&#xff0c;它可以帮助玩家记录游戏中的精彩瞬间&#xff0c;与其他玩家分享游戏的乐趣。同时&#xff0c;录制自己的声音也可以为游戏视频增色添彩&#xff0c;让玩家更好地沉浸在游戏的氛围中。可是游戏录屏怎么录自己的声音呢&a…

vue2 集成 Onlyoffice

缘起于进行了一次在线 Office 解决方案的调研&#xff0c;对比了 Office365、可道云、WPS Office、PageOffice 等厂商&#xff0c;最终敲定了使用 Onlyoffice&#xff0c;故整理了一份 Onlyoffice 从零开始系列教程&#xff0c;这是第一篇。 一、Onlyoffice 是什么&#xff1f…

视频标注的两个主要方法

视频标注技术 单一图像法 在自动化工具面世之前&#xff0c;视频标注效率不高。各公司使用单一图像法提取视频中的所有帧&#xff0c;然后使用标准图像标注技术将它们作为图像来标注。在30fps的视频中&#xff0c;每分钟有1800帧。这个过程没有利用视频标注的优势&#xff0c;…

信钰证券:股票的中线和年线?

股票商场一直是许多人注重的焦点。关于股票出资者来说&#xff0c;技巧和战略很重要。而股票的中线和年线便是股票出资中最基本的技术目标之一。这两个目标可以帮忙股民精确判别价格走势&#xff0c;拟定出资方案。在此我们将从几个角度分析股票的中线和年线的重要性。 什么是…

spring java 动态获取consul K/V

spring java 动态获取consul K/V 1.springConsul配置kv路径 spring:cloud:consul:enabled: ${CONSUL_ENABLED:true}host: ${CONSUL_HOST:localhost}port: ${CONSUL_PORT:8500}config:prefix: ${CONSUL_CONFIG_PREFIX:config} #consul kv前缀fail-fast: ${CONFIG_FAIL_FAST:fa…