【Hello Algorithm】暴力递归到动态规划(四)

动态规划的数组压缩技巧 - 机器人走格子问题

题目是leetcode62题目原题 表示如下

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

在这里插入图片描述

递归版本

我们首先来想递归函数的含义 它会返回给我们一个int类型的数据 这个数据就是我们的最大路径数

我们需要给这个函数 我们当前的位置 我们需要去到的位置 整体函数如下

int _uniquePaths(int x , int y ,int m , int n)

其中 x y 代表我们当前位置的坐标 m n代表要到达位置的坐标

接下来我们想base case

因为这是一个位置限制的棋盘 所以说我们要考虑是否会越界的问题 即

        if (x > m || y > n){return 0;}

当然 当我们的走到finish位置的时候也算是结束了 会返回给我们一种路径方法 表示如下

        if (x == m && y == n){return 1;}

接下来我们就开始列举各种可能性 因为我们这里只能往下或者是往右走 所以说一共有两种可能性

我们只需要把这两种可能性所需要的路径和相加就可以了 代码表示如下

    int _uniquePaths(int x , int y ,int m , int n){// base caseif (x > m || y > n){return 0;}if (x == m && y == n){return 1;}int p1 = _uniquePaths(x + 1 , y, m,  n);int p2 = _uniquePaths(x, y + 1, m,  n);return p1 + p2;}

动态规划

接下来我们开始动态规划版本的代码改写

首先我们找出一直变化的变量是什么

 int _uniquePaths(int x , int y ,int m , int n)

我们发现递归中一直变化的参数其实只有两个 x 和 y

所以说我们只需要建立一张x和y的二维表就可以

x的格子一共有m个 y的格子一共有n个 所以说 x的大小可以设置为 0 ~ m-1 y的大小可以设置为0 ~ n-1

我们要知道的是 x和y可能会越界 所以说我们要设置一个pickup函数来从表中选值 如果说越界了我们直接返回0即可

   int pickup_dp(int x , int y , int m , int n , vector<vector<int>>& dp){if (x > m || y > n){return 0;}return dp[x][y];}

接下来我们来看base case

        if (x == m && y == n){return 1;}

也就是说 当x为最大值 y为最大值的时候 此时dp表设置为1

dp[m-1][n-1] = 1;

接下来我们开始找位置依赖关系

        int p1 = _uniquePaths(x + 1 , y, m,  n);int p2 = _uniquePaths(x, y + 1, m,  n);

假设这个格子是表中任意一个 图中表示为黑色的格子

在这里插入图片描述
那么依赖的格子就是红色的

根据依赖关系 我们可以从右往左 从下往上的方式 来填写依赖关系 代码表示如下

    int dp_uniquePaths(int m , int n , vector<vector<int>>& dp){dp[m-1][n-1] = 1;for (int col = n -1 ; col >= 0 ; col--){for (int row = m -1; row >= 0; row--){if (row == m-1 && col == n-1){continue;}int p1 = pickup_dp(row + 1, col, m, n, dp);int p2 = pickup_dp(row , col + 1,  m,  n, dp);dp[row][col] = p1 + p2; }}return dp[0][0];}

这就是这道题目的动态规划解法

数组压缩技巧

我们可以发现的是 其实每个格子都只依赖于该列和它的右边一列 那么我们就可以使用两个列来表示整个二维表

也就是二维表转化为一维表 节省一定的空间

压缩技巧也很简单 只需要一列一列的转化就可以

代码表示如下

class Solution {
public:int pickup_dp(int x , int m , vector<int>& dp){if (x >= m || x < 0){return 0;}return dp[x];}int dp_uniquePaths(int m , int n ){// col1 prev // col2 curvector<int> col1(m , 0);vector<int> col2(m , 0);col1[m-1] = 1;for (int i = 0; i < n ; i++){for(int j = m - 1; j >= 0; j--){col2[j] = pickup_dp(j + 1, m, col2) + col1[j]; }for(int j = m -1 ; j >= 0 ; j--){col1[j] = col2[j];}}return col2[0];}int uniquePaths(int m, int n) {return dp_uniquePaths(m  , n );}
};

我们这里稍微讲解下两列的转化思路

我们设定 col1为前一列 col2为当前列

每次我们修改col2内部的值 到最后我们全部修改完毕要到下一列的时候 我们更新下col1列的所有值

钱包问题一

我们给定一个数组 arr 数组里面的值表示任意一张面值的钞票

每张钞票代表的值可能相同 但是我们认为它们是不同的钞票

现在我们给定一个 val 值 请问有多少种组合方案可以让val值为0

递归解法

还是一样 我们首先来想函数

它要返回给我们一个组合的最大值 所以说我们的返回值要是一个int类型的数值

我们要遍历整个money数组 所以说我们需要这个数组和一个index参数来遍历

接着我们需要一个rest参数来记录剩余零钱的数目

整体函数如下

int process(vector<int>& money , int index , int rest)

接下来我们开始想base case

这道题目中有两个变化的量 我们首先向有没有可能会因为index而终止递归呢?

当然有 如果index越界了 那么我们的递归也就终止了

有没有可能因为rest而终止递归呢 ?

当然有 如果剩余零钱的数目为0 我们就终止递归了

  if (rest < 0)    {    return 0;    }    int N = static_cast<int>(money.size());    if (index == N)    {    return rest == 0 ? 1 : 0;    }    

接下来开始列举可能性 对于这种从左往右的模型来说 可能性就是要和不要两种情况

所以说我们直接列出这两种可能性之后想加即可

int process(vector<int>& money , int index , int rest)    
{    if (rest < 0)    {    return 0;    }    int N = static_cast<int>(money.size());    if (index == N)    {    return rest == 0 ? 1 : 0;    }    int p1 = process(money , index + 1 , rest);    int p2 = process(money , index +1 , rest - money[index]);    return p1 + p2;    
} 

动态规划

我们首先观察递归函数

int process(vector<int>& money , int index , int rest)  

我们可以发现 其中变化的变量有 index 和 rest

所以说我们可以围绕着index 和 rest建立一张二维表

index 的大小是 0 ~ index 大小是index + 1

rest 的大小是 0 ~ rest 大小是rest + 1

我们建立完一个二维表之后就可以根据base case填写数据了

根据

 if (index == N)    {    return rest == 0 ? 1 : 0;    }    

我们可以得出

 dp[N][0] = 1;  

接着我们来看位置依赖关系

在这里插入图片描述

它依赖于下面一行的两个格子

所以说我们从最下面的倒数第二行开始填写数据 为了防止越界问题 我们再写一个pickup函数

完整代码如下

int dpprocess(vector<int>& money , int rest)    
{    int N = static_cast<int>(money.size());    vector<vector<int>> dp(N + 1 , vector<int>(rest + 1 , 0));    dp[N][0] = 1;    for (int row = N - 1;  row >= 0; row--){    for (int col = 0; col <= rest; col++)    {dp[row][col] = pickupdp(row + 1 , col , dp , N , rest) + pickupdp(row + 1 , col - money[row] , dp , N , rest);}}return dp[0][rest];
}

钱包问题二

我们给定一个数组 arr 数组里面的值表示任意一张面值的钞票 arr内部值不同

每一个arr中的元素代表有无数张钞票

现在我们给定一个 val 值 请问有多少种组合方案可以让val值为0


这个问题和问题一的区别就是 在问题2中 我们的钱包有无数张钞票 只是它们的面值不同 要我们求解法

递归版本

我们首先来想 我们要写什么样的一个递归函数

我们要让这个函数返回一个最大的组合方案 所以返回值是一个int类型的数据

而我们要在一个数组中选取数据 所以自然而然的想到使用index遍历

最后我们还需要一个rest来表示剩余值 整体表示如下

int process(vector<int>& money , int index , int rest)

接着就是想base case 这一步照抄钱包问题一即可

到了列举可能性的这一步就有点意思了

此时的问题就从要不要变为了两个问题

  • 要不要?
  • 要的话要几个

所以说我们的代码也要转变下

  int p1 = process(money , index + 1 , rest);    // how many ? int p2 = 0;    for (int fix = 1 ; fix * money[index] <= rest; fix++)    {    p2 += process(money , index + 1 , rest - fix * money[index]);    }   

可能性1就是我们不要这种类型的钞票了

可能性2就是我们要这种类型的钞票 一张张枚举 知道rest小于0为止

当然我们其实可以让fix从0开始 这样就不需要可能性1了

整体代码表示如下

int process(vector<int>& money , int index , int rest)
{if (rest < 0){return 0;}int N = static_cast<int>(money.size());if (index == N){return rest == 0 ? 1 : 0;}int p1 = process(money , index + 1 , rest);    // how many ? int p2 = 0;    for (int fix = 1 ; fix * money[index] <= rest; fix++)    {    p2 += process(money , index + 1 , rest - fix * money[index]);    }    return p1 + p2;    
}   

动态规划

我们首先观察递归函数

int process(vector<int>& money , int index , int rest)

我们可以发现 变量只有index 和rest

所以我们可以围绕着index和rest来做一张二维表

index 的大小是 0 ~ index 大小是index + 1

rest 的大小是 0 ~ rest 大小是rest + 1

我们建立完一个二维表之后就可以根据base case填写数据了

根据

 if (index == N)    {    return rest == 0 ? 1 : 0;    }    

我们可以得出

 dp[N][0] = 1;  

接下来我们来看为止依赖关系

在这里插入图片描述

我们可以发现这个位置依赖于下面一行的数据具体的格子数目不确定

所以说我们就可以写出这样子的代码

  for (int row = N - 1; row >= 0; row--)    {    for(int col = 0; col <= rest; col++)    {    int ways = 0;    for (int fix = 0; fix * money[row] <= rest; fix++)    {    ways += pickupdp(row + 1 , col - fix * money[row] , dp , N  , rest );    }    dp[row][col] = ways;                                                                                                        }    }    

动态规划优化

我们还是来观察下图

在这里插入图片描述

我们可以发现蓝色格子依赖的红色格子其实只比黑色格子依赖的红色格子少一个

也就是说我们可以这么转化

黑色格子依赖于蓝色格子和它下面的一个红色格子

于是我们的代码就可以这样子改写

int dpprocess(vector<int>& money , int rest)    
{    int N = static_cast<int>(money.size());    vector<vector<int>> dp(N + 1 , vector<int>(rest + 1 , 0));    dp[N][0] = 1;    for (int row = N - 1; row >= 0; row--)    {    for(int col = 0; col <= rest; col++)    {    dp[row][col] = pickupdp(row , col - money[row] , dp , N ,rest) + pickupdp(row + 1 , col , dp , N , rest);                   }    }    return dp[0][rest];    
}  

这样子我们就把原来的三个for循环优化成为了两个for循环 效率提高了不少

钱包问题三

我们给定一个数组 arr 数组里面的值表示任意一张面值的钞票 arr内部有相同值的钞票 我们认为值相同的钞票位置可以随意替换 (和题目一不同 题目一中每张钞票都是不同的 )

现在我们给定一个 val 值 请问有多少种组合方案可以让val值为0

这问题其实是题目二的变形

这里我提供一种思路将其转化为题目二 具体的代码大家可以自己尝试下

我们统计有多少种不同的钞票 并且将这些钞票添加到一个数组中

统计每个钞票的数目 再做一个数组

其中 第一个数组的用途和钱包问题二中的用途一样 而第二个数组则约束了每张钞票最多能取多少

之后按照钱包问题二的思路去做即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/109164.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分享Java NET Python三大技术下AutojsPro7云控代码

引言 有图有真相&#xff0c;那短视频就更是真相了。下面是三大语言的短视频。 Java源码版云控示例&#xff1a; Java源码版云控示例在线视频 Net源码版云控示例&#xff1a; Net源码版云控示例在线视频亚丁号-知识付费平台 支付后可见 扫码付费可见 Python源码版云控示例&…

openGauss Meetup(天津站)精彩回顾 | openGauss天津用户组正式成立

由openGauss社区、天开发展集团、天津市软件行业协会、天大智图&#xff08;天津&#xff09;科技有限公司联合主办的“openGauss Meetup • 天津站”已于10月13日落下帷幕&#xff0c;此次活动邀请到众多业内技术专家&#xff0c;从技术创新、学术创新、发展创新、以及生态共建…

基于内存的分布式NoSQL数据库Redis(五)数据存储与RDB设计

文章目录 知识点18&#xff1a;数据存储设计知识点19&#xff1a;Redis持久化&#xff1a;RDB设计知识点20&#xff1a;Redis持久化&#xff1a;RDB测试后记 知识点18&#xff1a;数据存储设计 目标&#xff1a;掌握常见数据存储的设计 实施 问题 数据存储如何保证数据安全&am…

QT实现凸凹边形等距缩放

参考&#xff1a;https://blog.csdn.net/weixin_39383896/article/details/99615371和https://blog.csdn.net/qq_15821883/article/details/117421400 代码逻辑思路&#xff1a; 1、获取向量AB、BC的坐标。 2、计算向量AB、BC的长度。 3、根据点乘获取cosθ大小。 4、根据cosθ…

数据结构之手撕顺序表(讲解➕源代码)

0.引言 在本章之后&#xff0c;就要求大家对于指针、结构体、动态开辟等相关的知识要熟练的掌握&#xff0c;如果有小伙伴对上面相关的知识还不是很清晰&#xff0c;要先弄明白再过来接着学习哦&#xff01; 那进入正题&#xff0c;在讲解顺序表之前&#xff0c;我们先来介绍…

代码随想录算法训练营第23期day25| 216.组合总和III 、17.电话号码的字母组合

目录 一、&#xff08;leetcode 216&#xff09;组合总和III 剪枝 二、&#xff08;leetcode 17&#xff09;电话号码的字母组合 思路 一、&#xff08;leetcode 216&#xff09;组合总和III 力扣题目链接 状态&#xff1a;已AC&#xff0c;就是在77题的前提下&#xff0c…

Unity3D 程序员常用的核心类及方法详解

Unity3D是一款强大的游戏引擎&#xff0c;广泛应用于游戏开发领域。作为Unity3D程序员&#xff0c;掌握常用的核心类及方法是非常重要的。本文将详细介绍Unity3D中程序员常用的核心类及方法&#xff0c;并给出代码实现。 对惹&#xff0c;这里有一个游戏开发交流小组&#xff…

基于ssm的旅游管理系统

功能如下图所示 摘要 基于SSM框架的旅游管理系统代表了信息技术在旅行业中的崭新机遇&#xff0c;为旅行企业提供了强大的工具&#xff0c;以应对现代旅游市场的复杂挑战。这个系统的研发和实施具有广泛的研究意义&#xff0c;它深刻影响了旅游业的发展&#xff0c;具体表现如下…

简单测试一下 展锐的 UDX710 性能

最近在接触 联通5G CPE VN007 &#xff0c;发现使用的是 展锐的Unisoc UDX710 CPU&#xff0c;正好简单的测试一下这颗CPU CPU信息 UDX710 是一颗 双核 ARM Cortex-A55 处理器&#xff0c;主频高达 1.35GHz processor : 0 BogoMIPS : 52.00 Features : fp…

QT最小化到托盘显示

一、效果&#xff1a; 程序关闭后&#xff0c;程序并没有退出&#xff0c;而是放入了托盘中&#xff1b;点击恢复原始大小&#xff0c;或者双击托盘图标&#xff0c;可以恢复程序原来的窗口。如下图。 那qt是如何实现这样的办法呢&#xff0c;其实就是用到了 QSystemTrayIcon类…

2023.10.17 关于 wait 和 notify 的使用

目录 引言 方法的使用 引入实例&#xff08;wait 不带参数版本&#xff09; wait 方法执行流程 wait 和 notify 组合实例 wait 带参数版本 notify 和 notifyAll 的区别 经典例题 总结 引言 线程最大的问题是抢占式执行&#xff0c;随机调度虽然线程在内核里的调度是随…

【前端学习】—JS判断数据类型的方式有哪些(八)

【前端学习】—JS判断数据类型的方式有哪些&#xff08;八&#xff09; 一、JS中判断数据类型的场景 二、JS中有哪些数据类型 三、JS判断数据类型的方式有哪些 const arr[]; const object{};const number1; const stringstring;//typeofconst typetypeof arr; console.log(type…

从头开始机器学习:神经网络

一、说明 如果你还没有做过逻辑回归&#xff0c;你会在这里挣扎。我强烈建议在开始之前查看它。您在逻辑回归方面的能力将影响您学习神经网络的难易程度和速度。 二、神经网络简介 神经网络是一个神经元网络。这些神经元是逻辑回归函数&#xff0c;它们被链接在一起形成一个网络…

只会Python,怎么用PC控制无人机自动飞行?

PC-SDK是阿木实验室 (AMOVLAB) 为了简化开源飞控的控制协议MAVLink&#xff0c;优化和维护的一个基于PC电脑运行MAVSDK(支持Windows和Ubuntu)的Python SDK库。 相对于传统的无人机控制开发&#xff0c;开发者无需掌握C/C语言和ROS等相关知识&#xff0c;只要学会Python编程及懂…

leetcode 1143. 最长公共子序列、1035. 不相交的线、53. 最大子数组和

1143. 最长公共子序列 给定两个字符串 text1 和 text2&#xff0c;返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 &#xff0c;返回 0 。 一个字符串的 子序列 是指这样一个新的字符串&#xff1a;它是由原字符串在不改变字符的相对顺序的情况下删除某些…

wsl使用vscode连接,远程安装C/C++ 拓展时,报错

报错内容&#xff1a; EACCES: permission denied, rename /home/wen/.vscode-server/extensions/.b61b1c7c-f703-4dfd-bdc5-d9a00681c4b7 -> /home/wen/.vscode-server/extensions/ms-vscode.cpptools-1.17.5-linux-x64 解决办法&#xff1a; 升级wsl到wsl2就好了。 &a…

Vue-router快速入门 是什么 如何跳转 如何传值的问题

3.1 Vue-router是什么 Vue-router:Vue.js 的官方路由为 Vue.js 提供富有表现力、可配置的、方便的路由 官网&#xff1a;https://router.vuejs.org/zh/ 作用&#xff1a; 1.实现vue页面(组件)的跳转 2.可以在跳转的时候携带参数 3.2 Vue3使用Vue-router(静态路由) 基于Vu…

C# CodeFormer Inpainting 人脸填充

效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.Drawing.Imaging; using System.Windows.Forms;namespace CodeFormer_D…

UnitTesting 单元测试

1. 测试分为两种及详细介绍测试书籍: 1.1 Unit Test : 单元测试 - test the business logic in your app : 测试应用中的业务逻辑 1.2 UI Test : 界面测试 - test the UI of your app : 测试应用中的界面 1.3 测试书籍网址:《Testing Swift》 https://www.hackingwithswift.c…

MySQL——六、库表操作(下篇)

MySQL 一、INSERT语句二、REPLACE语句三、UPDATE语句四、delete和TRUNCATE语句五、MySQL用户授权1、密码策略2、用户授权和撤销授权 一、INSERT语句 #在表里面插入数据&#xff1a;默认情况下&#xff0c;一次插入操作只插入一行 方式1&#xff1a; INSERT [INTO] 表名 [(colu…