基于闪电连接过程优化的BP神经网络(分类应用) - 附代码

基于闪电连接过程优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于闪电连接过程优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.闪电连接过程优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 闪电连接过程算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用闪电连接过程算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.闪电连接过程优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 闪电连接过程算法应用

闪电连接过程算法原理请参考:https://blog.csdn.net/u011835903/article/details/120783760

闪电连接过程算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从闪电连接过程算法的收敛曲线可以看到,整体误差是不断下降的,说明闪电连接过程算法起到了优化的作用:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/108986.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

超越平凡:Topaz Photo AI for Mac带您领略人工智能降噪的魅力

在这个充满噪点和高频信息的时代,照片和视频的降噪成为了一个重要而迫切的需求。Mac用户现在有了一个强大的新工具——Topaz Photo AI for Mac,这是一款利用人工智能技术进行降噪和优化的软件。通过这款软件,您可以轻松地改善图像质量&#x…

Ps:变形

Ps菜单:编辑/变换/变形 Edit/Transform/Warp 变形 Warp是自由变换的一种模式,不仅可以用于物体的伸缩扭曲,也可用于人体的局部塑形。 除了从菜单打开,通常情况下,按 Ctrl T 进入自由变换,然后在画面上右击…

分享一份适合练手的软件测试实战项目

最近,不少读者托我找一个能实际练手的测试项目。开始,我觉得这是很简单的一件事,但当我付诸行动时,却发现,要找到一个对新手友好的练手项目,着实困难。 我翻了不下一百个web网页,包括之前推荐练…

单目3D自动标注

这里介绍两种 1. 基于SAM的点云标注 Seal:是一个多功能的自监督学习框架,能够通过利用视觉基础模型的现成知识和2D-3D的时空约束分割自动驾驶数据集点云 Scalability:可拓展性强,视觉基础模型蒸馏到点云中,避免2D和…

算法-堆/归并排序-排序链表

算法-堆/归并排序-排序链表 1 题目概述 1.1 题目出处 https://leetcode.cn/problems/sort-list/description/?envTypestudy-plan-v2&envIdtop-interview-150 1.2 题目描述 2 优先级队列构建大顶堆 2.1 思路 优先级队列构建小顶堆链表所有元素放入小顶堆依次取出堆顶…

30W网络对讲广播一体音柱

SV-7042T 30W网络对讲广播一体音柱 一、描述 SV-7042T是深圳锐科达电子有限公司的一款壁挂式网络有源音柱,具有10/100M以太网接口,可将网络音源通过自带的功放和喇叭输出播放,其采用防水设计,功率可以从20W到40W。SV-7042T作为网…

01【Git的基本使用与底层命令】

下一篇:02【Git的分支与数据恢复】 目录:【Git系列教程-目录大纲】 文章目录 一、Git概述1.1 Git简介1.2 集中式与分布式1.2.1 集中式版本控制1.2.2 分布式版本控制 1.3 Git的使用流程1.3.1 本地仓库1.3.2 协同开发 1.4 Git的配置1.4.1 Git的配置等级1…

华为汪涛:5.5G时代UBB目标网,跃升数字生产力

[阿联酋,迪拜,2023年10月12日] 在2023全球超宽带高峰论坛上,华为常务董事、ICT基础设施业务管理委员会主任汪涛发表了“5.5G时代UBB目标网,跃升数字生产力”的主题发言,分享了超宽带产业的最新思考与实践,探…

MySQL远程连接

一、什么是mysq的远程连接? 1、本地连接 直接在本地使用mysqladmin命令登录 mysql -u root -p 解释如下: mysql:mysql 命令表示要启动 MySQL 客户端。-u root:-u 选项指定要使用的用户名。在这里,我们使用 root 用户名作为示例。-p:-p 选项需要用户输入密码。如果省…

比postman更好用的接口管理软件——Apifox

比postman更好用的接口管理软件——Apifox 官网安装和登录Apifox功能使用团队管理&项目管理接口管理接口文档 Apifox 帮助文档 最近使用了一个好用的中文版接口管理软件,Apifox,以下介绍一下它的使用方式及好处。 官网 Apifox的官方地址&#xff1a…

Python制作PDF转Word工具(Tkinter+pdf2docx)

一、效果样式 二、核心点 1. 使用pdf2docx完成PDF转换Word 安装pdf2docx可能会报错,安装完成引入from pdf2docx import Converter运行也可能报错,可以根据报错提示看缺少那些库,先卸载pip uninstall xxx,使用pip install python-docx -i htt…

Stm32_标准库_16_串口蓝牙模块_手机与蓝牙模块通信_手机传入信息能对芯片时间日期进行更改

实现了手机发送信息给蓝牙模块,程序对数据进行分析拆解,并更新自身数据 main.c: #include "stm32f10x.h" // Device header #include "Delay.h" #include "OLED.h" #include "Serial.h" #include "Ti…

Docker仓库harbor私服搭建

Harbor和Registry都是Docker的镜像仓库,但是Harbor作为更多企业的选择,是因为相比较于Regisrty来说,它具有很多的优势。 提供分层传输机制,优化网络传输 Docker镜像是是分层的,而如果每次传输都使用全量文件(所以用FT…

特斯拉pre-test (Go)

特斯拉pre-test (Go) 1 Q12 Q23 Q3 1 Q1 原文: You are given an implementation of a function Solution that, given a positive integer N, prints to standard output another integer, which was formed by reversing a decimal repres…

基于Lang-Chain(ChatGLM和ChatChat)知识库大语言模型的部署搭建

环境准备 阿里云个人认证后,可免费试用机器学习平台PAI,可提供适合大语言模型环境搭建的高配置服务器。 点击试用阿里云服务器 试用产品选择:选择交互式建模PAI-DSW 适合哪些场景 文章/知识库/帮助文档等的检索基于现有知识库实现问答… …

GPT4 Advanced data analysis Code Interpreter 做行业数据分析、可视化处理图像、视频、音频等

1. 跨境电商如何用ChatGPT选品 ChatGPT Jungle scout 案例:跨境电商如何用ChatGFT选品 ChatGPTJungle scout 素材和资料来自: Jungle ScoutEM, Michael Soltis 和 文韬武韬AIGC 1.1 从Jungle scout上下载数据 Date Range > Last 90 days Downlo…

uniapp(uncloud) 使用生态开发接口详情3(新增产品分类,产品列表,新闻列表)

我的想法是有产品分类,产品列表,新闻咨询,新闻列表 项目中, uniCloud > database 目录下新建 sy_product_nav.schema.json // 代码如下 {"bsonType": "object","required": ["classname"],"permission": {"read&…

rabbitMq (2)

RabbitMQ 消息应答与发布 文章目录 1. 消息应答1.2 自动应答1.2 手动应答1.3 代码案例 2. RabbitMQ 持久化2.1 队列持久化2.2 消息持久化 3. 不公平分发4. 预取值分发5. 发布确认5.1 发布确认逻辑5.2 开启发布确认的方法5.3 单个确认发布5.4 批量确认发布5.5 异步确认5.5.1 处理…

【LeetCode热题100】--31.下一个排列

31.下一个排列 思路: 方法:两遍扫描 注意到下一个排列总是比当前排列要大,除非该排列已经是最大的排列。我们希望找到一种方法,能够找到一个大于当前序列的新序列,且变大的幅度尽可能小。具体地: 我们需要…

实验室设备modbus小结

背景: 大概花1个月,后端代码量再1W行多点,不同厂商的指令不同需要定制化开发。参与了设备的数据采集工作,当然常规的设备管理、权限就不重点展开。 都是物联网相关,但是还是有所不同。 之前做过海尔的U home相关的项目…