2023大联盟6比赛总结

比赛链接

反思

A

为什么打表就我看不出规律!!!
定式思维太严重了T_T

B

纯智障分块题,不知道为什么 B = 100 B=100 B=100 比理论最优 B = 300 B=300 B=300 更优(快了 3 倍),看来分块还是要学习一些卡常技巧的

C

菜死了,不会

D

菜死了,不会

题解

A

神奇的式子,考虑打表
打表!!!
可以发现一下两个规律:

  1. 只有当 x + y x+y x+y 2 2 2 的次幂时 f ( x , y ) f(x,y) f(x,y) 才可能不为 0 0 0
  2. f ( x , y ) = f ( x d , y d ) f(x,y)=f(\frac{x}{d},\frac{y}{d}) f(x,y)=f(dx,dy),其中 d = gcd ⁡ ( x , y ) d=\gcd(x,y) d=gcd(x,y)
    且若 x + y = 2 k , x , y x+y=2^k,x,y x+y=2k,x,y 都为奇数且 ( x , y ) = 1 (x,y)=1 (x,y)=1 时, f ( x , y ) = k f(x,y)=k f(x,y)=k

考虑证明:
考虑 x + y x+y x+y 必须为偶数因为一直循环下去 x + y x+y x+y 的值不变
f ( x , y ) = f ( x d , y d ) f(x,y)=f(\frac{x}{d},\frac{y}{d}) f(x,y)=f(dx,dy) 是易得的
我们只需要考虑 x , y x,y x,y 都为奇数的情况,因为 x , y x,y x,y 为偶数时 2 ∣ gcd ⁡ ( x , y ) 2|\gcd(x,y) 2∣gcd(x,y)
x > y x>y x>y,则 f ( x , y ) = f ( 2 y , x − y ) + 1 f(x,y)=f(2y,x-y)+1 f(x,y)=f(2y,xy)+1
因为 2 y , x − y 2y,x-y 2y,xy 都为偶数,所以 f ( x , y ) = f ( y , x − y 2 ) + 1 f(x,y)=f(y,\frac{x-y}{2})+1 f(x,y)=f(y,2xy)+1
这样 x ′ + y ′ x'+y' x+y 的值就除了 2 2 2,且因为 gcd ⁡ ( x , y ) = 1 \gcd(x,y)=1 gcd(x,y)=1,所以 gcd ⁡ ( y , x − y 2 ) = 1 \gcd(y,\frac{x-y}{2})=1 gcd(y,2xy)=1
所以 x + y x+y x+y 只有当是 2 2 2 的次幂时, x ′ = y ′ x'=y' x=y,且操作次数为 l o g 2 ( x + y ) log_2(x+y) log2(x+y)

我们发现这有值的点对个数是 O ( n l o g n ) O(nlogn) O(nlogn) 级别的
所以我们可以把所有有值的点对找出来,然后询问就相当于二维数点了
离线询问 + 扫描线 + 树状数组即可
时间复杂度 O ( n l o g 2 n ) O(nlog^2n) O(nlog2n)

#include <bits/stdc++.h>
#define pb push_back
#define lowbit(x) x&-x
using namespace std;
typedef long long LL;
const int N=300100,Q=1000100;
struct Node{ int p1,p2,val;};
struct Node2{ int l,r,id,coef;};
int n,p[N],b[N];
LL tr[N],ans[Q];
Node used[N*40];
vector<Node2> query[N];
inline int read(){int FF=0,RR=1;char ch=getchar();for(;!isdigit(ch);ch=getchar()) if(ch=='-') RR=-1;for(;isdigit(ch);ch=getchar()) FF=(FF<<1)+(FF<<3)+ch-48;return FF*RR;
}
bool cmp(const Node &x,const Node &y){ return x.p1<y.p1;}
void add(int x,int v){ for(;x<=n;x+=lowbit(x)) tr[x]+=v;}
LL ask(int x){if(x<=0) return 0;LL res=0;for(;x;x-=lowbit(x)) res+=tr[x];return res;
}
int main(){freopen("perm.in","r",stdin);freopen("perm.out","w",stdout);n=read();for(int i=1;i<=n;i++) p[i]=read(),b[p[i]]=i;int cnt=0;for(int pw=4,mi=2;pw<=n<<1;pw<<=1,mi++)for(int x=1;x<=pw;x+=2){int y=pw-x;for(int k=1;k*max(x,y)<=n;k++) used[++cnt]={b[x*k],b[y*k],mi};}int q=read();for(int i=1;i<=q;i++){int l=read(),r=read();query[l-1].pb({l,r,i,-1}),query[r].pb({l,r,i,1});}sort(used+1,used+cnt+1,cmp);for(int i=1,j=0;i<=n;i++){while(j<cnt&&used[j+1].p1<=i){j++;assert(used[j].p2>=1&&used[j].p2<=n);add(used[j].p2,used[j].val);}for(Node2 t:query[i]) ans[t.id]+=t.coef*(ask(t.r)-ask(t.l-1));}for(int i=1;i<=q;i++) printf("%lld\n",ans[i]/2);fprintf(stderr,"%d ms\n",int(1e3*clock()/CLOCKS_PER_SEC));return 0;
}

B

不说了,思想比较简单,就是分块 + 块内用优先队列维护
时间复杂度 O ( n m l o g n ) O(n\sqrt mlogn) O(nm logn) m m m 为修改操作个数
块长设为 100 100 100 实测最优

#pragma GCC optimize(3)
#include <bits/stdc++.h>
using namespace std;
const int N=100100,MAXB=1010,P=1e9+7;
typedef pair<int,int> pii;
int n,m,a[N],pref[N],pos[N];
int B,sum[MAXB],tot[MAXB],tag[MAXB],_l[MAXB],_r[MAXB];
priority_queue<pii,vector<pii>,greater<pii> > pq[MAXB];
inline int read(){int FF=0,RR=1;char ch=getchar();for(;!isdigit(ch);ch=getchar()) if(ch=='-') RR=-1;for(;isdigit(ch);ch=getchar()) FF=(FF<<1)+(FF<<3)+ch-48;return FF*RR;
}
inline int calc(int x){int cur=sqrt(x);return (pref[cur-1]+1ll*(x-cur*cur+1)*cur)%P;
}
inline void inc(int &x,int y){ x+=y;if(x>=P) x-=P;}
void rebuild(int Block){for(int i=_l[Block];i<=_r[Block];i++) a[i]+=tag[Block];tag[Block]=tot[Block]=sum[Block]=0;while(!pq[Block].empty()) pq[Block].pop();for(int i=_l[Block];i<=_r[Block];i++){int sq=sqrt(a[i]);inc(tot[Block],calc(a[i])),inc(sum[Block],sq);pq[Block].emplace(make_pair((sq+1)*(sq+1)-a[i],i));}assert(tot[Block]>=0);
}
void modify(int l,int r){if(pos[l]==pos[r]){for(int i=l;i<=r;i++) a[i]++;rebuild(pos[l]);return;}else{int i=l,j=r;while(pos[i]==pos[l]) a[i]++,i++;while(pos[j]==pos[r]) a[j]++,j--;rebuild(pos[l]),rebuild(pos[r]);for(int k=pos[i];k<=pos[j];k++){tag[k]++;pii t=pq[k].top();while(t.first<=tag[k]){pq[k].pop();inc(sum[k],1);int v=sqrt(a[t.second]+tag[k]);assert(v*v==a[t.second]+tag[k]);pq[k].push(make_pair((v+1)*(v+1)-a[t.second],t.second));t=pq[k].top();}inc(tot[k],sum[k]);}}
}
int query(int l,int r){int ans=0;if(pos[l]==pos[r]){rebuild(pos[l]);for(int i=l;i<=r;i++) inc(ans,calc(a[i]));}else{rebuild(pos[l]),rebuild(pos[r]);int i=l,j=r;while(pos[i]==pos[l]) inc(ans,calc(a[i])),i++;while(pos[j]==pos[r]) inc(ans,calc(a[j])),j--;for(int k=pos[i];k<=pos[j];k++) inc(ans,tot[k]);}return ans;
}
int main(){freopen("play.in","r",stdin);freopen("play.out","w",stdout);for(int i=1;i<=40000;i++) pref[i]=(pref[i-1]+((1ll*(i+1)*(i+1)-1ll*i*i)%P+P)*i)%P;for(int i=1;i<=40000;i++) assert(pref[i]>=0);n=read(),m=read();for(int i=1;i<=n;i++) a[i]=read();B=100;for(int i=1;i<=n;i++) pos[i]=(i-1)/B+1;for(int i=1;i<=pos[n];i++) _l[i]=_r[i-1]+1,_r[i]=i*B;_r[pos[n]]=n;for(int i=1;i<=pos[n];i++) rebuild(i);for(int i=1;i<=m;i++){int op=read(),l=read(),r=read();if(op==1) modify(l,r);else printf("%d\n",query(l,r));}fprintf(stderr,"%d ms\n",int(1e3*clock()/CLOCKS_PER_SEC));return 0;
}

C

感觉是到有点 nb 的题
不考虑翻转,如何求 l i s lis lis
考虑枚举分界点 i i i,那么答案 = max ⁡ { i 前面 0 的个数 + i 后面 1 的个数 } =\max\{i前面0的个数+i后面1的个数\} =max{i前面0的个数+i后面1的个数}
这等价于 s 1 + max ⁡ i = 1 n s u m i s1+\max\limits_{i=1}^{n} sum_i s1+i=1maxnsumi,其中 s 1 s1 s1 为序列中 1 1 1 的个数, s u m i sum_i sumi 为把 0 0 0 的权值设为 1 1 1 1 1 1 的权值设为 − 1 -1 1 的前缀和

考虑翻转操作
我们可以把这个问题等价地看成选出一段前缀和与 m m m 段不相交子区间(不能与前缀相交)的和的最大值
这一步感觉很难想,也很难理解
具体我也不会证,只能自己画图感性理解

然后就是经典的反悔贪心操作了,找最大的区间,然后区间取反,用线段树维护即可
时间复杂度 O ( n l o g n ) O(nlogn) O(nlogn)

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N=200100;
int n,val[N],s[N];
inline int read(){int FF=0,RR=1;char ch=getchar();for(;!isdigit(ch);ch=getchar()) if(ch=='-') RR=-1;for(;isdigit(ch);ch=getchar()) FF=(FF<<1)+(FF<<3)+ch-48;return FF*RR;
}
struct Node{int l,r,sum;int lmx,rmx,mx,Lp,Rp,LLp,RRp;int lmn,rmn,mn,Lq,Rq,LLq,RRq;bool tag;
}seg[N<<2];
Node operator +(const Node &lc,const Node rc){Node ret;ret.l=lc.l,ret.r=rc.r,ret.tag=0;ret.sum=lc.sum+rc.sum;ret.lmx=lc.lmx,ret.LLp=lc.LLp;if(lc.sum+rc.lmx>ret.lmx) ret.lmx=lc.sum+rc.lmx,ret.LLp=rc.LLp;ret.rmx=rc.rmx,ret.RRp=rc.RRp;if(rc.sum+lc.rmx>ret.rmx) ret.rmx=rc.sum+lc.rmx,ret.RRp=lc.RRp;ret.mx=lc.rmx+rc.lmx,ret.Lp=lc.RRp,ret.Rp=rc.LLp;if(lc.mx>ret.mx) ret.mx=lc.mx,ret.Lp=lc.Lp,ret.Rp=lc.Rp;if(rc.mx>ret.mx) ret.mx=rc.mx,ret.Lp=rc.Lp,ret.Rp=rc.Rp;ret.lmn=lc.lmn,ret.LLq=lc.LLq;if(lc.sum+rc.lmn<ret.lmn) ret.lmn=lc.sum+rc.lmn,ret.LLq=rc.LLq;ret.rmn=rc.rmn,ret.RRq=rc.RRq;if(rc.sum+lc.rmn<ret.rmn) ret.rmn=rc.sum+lc.rmn,ret.RRq=lc.RRq;ret.mn=lc.rmn+rc.lmn,ret.Lq=lc.RRq,ret.Rq=rc.LLq;if(lc.mn<ret.mn) ret.mn=lc.mn,ret.Lq=lc.Lq,ret.Rq=lc.Rq;if(rc.mn<ret.mn) ret.mn=rc.mn,ret.Lq=rc.Lq,ret.Rq=rc.Rq;return ret;
}
void down(int x){swap(seg[x].lmx,seg[x].lmn),swap(seg[x].rmx,seg[x].rmn),swap(seg[x].mx,seg[x].mn);swap(seg[x].Lp,seg[x].Lq),swap(seg[x].Rp,seg[x].Rq),swap(seg[x].LLp,seg[x].LLq),swap(seg[x].RRp,seg[x].RRq);seg[x].sum*=-1,seg[x].lmx*=-1,seg[x].rmx*=-1,seg[x].mx*=-1,seg[x].lmn*=-1,seg[x].rmn*=-1,seg[x].mn*=-1;seg[x].tag^=1;
}
void pushdown(int x){if(seg[x].tag) down(x<<1),down(x<<1^1);seg[x].tag=0;
}
void build(int l,int r,int x){if(l==r){ seg[x]={l,l,val[l],val[l],val[l],val[l],l,l,l,l,val[l],val[l],val[l],l,l,l,l,0};return;}int mid=(l+r)>>1; build(l,mid,x<<1),build(mid+1,r,x<<1^1);seg[x]=seg[x<<1]+seg[x<<1^1];
}
void modify(int l,int r,int x,int L,int R){if(L<=l&&r<=R){ down(x);return;}pushdown(x);int mid=(l+r)>>1;if(mid>=L) modify(l,mid,x<<1,L,R);if(mid<R) modify(mid+1,r,x<<1^1,L,R);seg[x]=seg[x<<1]+seg[x<<1^1];
}
signed main(){freopen("lis.in","r",stdin);freopen("lis.out","w",stdout);n=read();int ans=0;for(int i=1;i<=n;i++){int a=read(),b=read();if(a==0) a=1;else a=-1,ans+=b;val[i]=a*b,s[i]=s[i-1]+val[i];}int mx=0;s[0]=-1e18;for(int i=1;i<=n;i++) if(s[i]>s[mx]) mx=i;build(1,n,1);if(s[mx]>0) ans+=s[mx],modify(1,n,1,1,mx);printf("%lld\n",ans);int m=read();for(int i=1;i<=m;i++){Node ret=seg[1];if(ret.mx>0) ans+=ret.mx,modify(1,n,1,ret.Lp,ret.Rp);printf("%lld\n",ans);}fprintf(stderr,"%d ms\n",int64_t(1e3*clock()/CLOCKS_PER_SEC));return 0;
}

D

考虑暴力是 f i , j f_{i,j} fi,j 表示当前在 i i i,前一个选 j j j 的最大长度,因为 p i ≠ k p_i\neq k pi=k 的限制很松,所以直接记录最大值和次大值就可以维护,时间复杂度 O ( n 3 ) O(n^3) O(n3)

于是我们可以猜测需要保留的转移状态不会太多,事实上是真的
我们令三元组 ( l e n t h , p r e , i ) (lenth,pre,i) (lenth,pre,i) 表示当前在 i i i,上一个在 p r e pre pre,长度为 l e n t h lenth lenth 的状态
我们考虑用这个东西转移
每次答案,我们需要把 a j < a i a_j<a_i aj<ai ( l e n t h , p r e , j ) (lenth,pre,j) (lenth,pre,j) 取出,然后更新 i i i 的状态
结论1:对于 i i i 只需要保留 l e n t h lenth lenth 最长的两个且满足 j p ≠ j q j_p\neq j_q jp=jq 的状态
首先 j j j 相等的状态只需要保留一个,那么后面最多只会排除掉 1 1 1 个状态,所以只需要暴力 2 2 2 个状态
结论2:只需要取出 ( l e n t h , p r e , j ) (lenth,pre,j) (lenth,pre,j) 的前 5 5 5 l e n t h lenth lenth,且对于 p r e pre pre 相同的,我们只保留最大的 2 2 2
为什么,考虑如果前两个的 p r e pre pre 都和 i i i 一样,那么后两个必然有两个 p r e pre pre 不相同的,是可以更新出 2 2 2 个有效答案的

时间复杂度 O ( n l o g n ) O(nlogn) O(nlogn)(但常数有点大,我稍微卡了一下常)

#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define pb push_back
#define lowbit(x) x&-x
using namespace std;
const int N=200100;
inline int read(){int FF=0,RR=1;char ch=getchar();for(;!isdigit(ch);ch=getchar()) if(ch=='-') RR=-1;for(;isdigit(ch);ch=getchar()) FF=(FF<<1)+(FF<<3)+ch-48;return FF*RR;
}
struct Node{ int lenth,pre,x;//以x结尾的长度为lenth的序列,前一个为pre的一种转移
};
vector<Node> tr[N];
int n,a[N],p[N],cnt[N];
bool cmp(const Node &o1,const Node &o2){ return o1.lenth>o2.lenth;}
auto select(vector<Node> vec){sort(vec.begin(),vec.end(),cmp);vector<Node> ret;for(auto t:vec){int c=0;for(auto q:ret) if(q.pre==t.pre) c++;if(c==2) continue;ret.pb(t);if(ret.size()==5) break;}return ret;
}
const int B=20;
void add(int x,vector<Node> ad){for(;x<=n;x+=lowbit(x)){for(auto t:ad) tr[x].pb(t);if(tr[x].size()>=B) tr[x]=select(tr[x]);}
}
auto query(int x){vector<Node> ret;for(;x;x-=lowbit(x)) for(auto t:tr[x]) ret.pb(t);return ret;
}
void work(){n=read();for(int i=1;i<=n;i++) a[i]=read();for(int i=1;i<=n;i++) p[i]=read();int ans=0;for(int i=1;i<=n;i++){auto ret=query(a[i]-1);ret.pb({0,-1,-1});//以i为开头ret=select(ret);vector<Node> cur;for(auto t:ret)if(p[i]!=t.pre)if(!cur.size()||t.x!=cur.back().pre){cur.pb({t.lenth+1,t.x,i});if(cur.size()==2) break;}for(auto t:cur) ans=max(ans,t.lenth);add(a[i],cur);}printf("%d\n",ans);for(int i=1;i<=n;i++) tr[i].clear();
}
int main(){freopen("cactus.in","r",stdin);freopen("cactus.out","w",stdout);int T=read();while(T--) work();fprintf(stderr,"%d ms\n",int(1e3*clock()/CLOCKS_PER_SEC));return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/108536.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode热题100】--287.寻找重复数

287.寻找重复数 方法&#xff1a;使用快慢指针 使用环形链表II的方法解题&#xff08;142.环形链表II&#xff09;&#xff0c;使用 142 题的思想来解决此题的关键是要理解如何将输入的数组看作为链表。 首先明确前提&#xff0c;整数的数组 nums 中的数字范围是 [1,n]。考虑一…

VScode无法跳转函数定义

VScode需要在当前工作环境下解析函数之间的依赖关系&#xff0c;如果工作环境是根目录/&#xff0c;扫描的文件范围会比/home/username/code大很多&#xff0c;导致VScode无法解析出函数依赖&#xff0c;也就无法跳转。 解决办法&#xff1a;将路径目录从高目录调整到较低的目…

【Qt控件之QDialogButtonBox】概述及使用

概述 QDialogButtonBox类是一个小部件&#xff0c;它以适合当前小部件样式的布局呈现按钮。 对话框和消息框通常以符合该台界面指南的布局呈现按钮。不同的平台会有不同的对话框布局。QDialogButtonBox允许发人员向其添加按钮&#xff0c;并将自使用用户的桌面环境所适合的布局…

数据结构--堆

一. 堆 1. 堆的概念 堆&#xff08;heap&#xff09;&#xff1a;一种有特殊用途的数据结构——用来在一组变化频繁&#xff08;发生增删查改的频率较高&#xff09;的数据集中查找最值。 堆在物理层面上&#xff0c;表现为一组连续的数组区间&#xff1a;long[] array &…

MySQl_2

目录 函数 一.字符串函数 二.数值函数 三.日期函数 四.流程控制函数 约束 多表查询 多表关系 一.内连接 二.外连接 三.自连接 四.联合查询 五.子查询 标量子查询 列子查询 行子查询 表子查询 函数 一.字符串函数 二.数值函数 SELECT LPAD(FLOOR(RAND()*1000000),…

二叉树与递归的相爱相杀

数据结构之二叉树 一、基于二叉树的基础操作1.二叉树的构建2.二叉树的遍历①前序遍历&#xff08;深度遍历&#xff09;②中序遍历③后序遍历④层序遍历判断一棵二叉树是否是完全二叉树&#xff08;基于层序遍历的思想&#xff09; 3.二叉树的数量问题①求二叉树结点个数②求二…

PixMIM论文笔记

论文名称&#xff1a;PixMIM: Rethinking Pixel Reconstruction in Masked Image Modeling 发表时间&#xff1a;2023 年 3 月 4 日 作者及组织&#xff1a;上海人工智能实验室、西蒙菲莎大学、香港中文大学 GitHub&#xff1a;https://github.com/open-mmlab/mmselfsup/tree/d…

transformer_01

一、传统RNN存在的问题 1.序列前序太长&#xff0c;每个xi要记住前面的特征&#xff0c;而且一直在学&#xff0c;没有忘记&#xff0c;可能特征不能学的太好 2.串行&#xff0c;层越多越慢&#xff0c;难以堆叠很多层&#xff1b; 3.只能看到过去&#xff0c;不能看到未来 搞…

什么是NetApp的DQP和如何安装DQP?

首先看看什么是DQP&#xff0c;DQPDisk Qualification Package&#xff0c;文字翻译就是磁盘验证包。按照NetApp的最佳实践&#xff0c;要定期升级DQP包&#xff0c;保证对最新磁盘和磁盘扩展柜的兼容。 本文主要介绍7-mode下如何升级DQP&#xff0c;至于cluster mode另外文章…

gazebo各种插件

类别 libgazebo_ros_api_plugin.so&#xff1a;提供与Gazebo仿真环境进行通信的API接口。 libgazebo_ros_block_laser.so&#xff1a;模拟激光传感器的插件。 libgazebo_ros_bumper.so&#xff1a;模拟碰撞传感器的插件。 libgazebo_ros_camera.so&#xff1a;模拟相机传感器的…

Linux Zabbix企业级监控平台+cpolar实现远程访问

文章目录 前言1. Linux 局域网访问Zabbix2. Linux 安装cpolar3. 配置Zabbix公网访问地址4. 公网远程访问Zabbix5. 固定Zabbix公网地址 前言 Zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案。能监视各种网络参数&#xff0c;保证服务器系…

@RequestParam和@RequestBody部分使用场景总结

总结代码如下 package com.woer.receipt_callback.controller;import cn.hutool.log.StaticLog; import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor; import org.springframework.web.bind.annotation.*;/*** 总结&#xff1a;* 一、Ge…

基于边缘网关构建水污染监测治理方案

绿水青山就是金山银山&#xff0c;生态环境才是人类最宝贵的财富。但是在日常生活生产中&#xff0c;总是免不了各种污水的生产、排放。针对生产生活与环境保护的均衡&#xff0c;可以借助边缘网关打造环境污水监测治理体系&#xff0c;保障生活与环境的可持续性均衡发展。 水污…

NewStarCTF2023week2-Upload again!

尝试传修改后缀的普通一句话木马&#xff0c;被检测 尝试传配置文件 .htaccess 和 .user.ini 两个都传成功了 接下来继续传入经过修改的木马 GIF89a <script language"php"> eval($_POST[cmd]); </script> 没有被检测&#xff0c;成功绕过 直接上蚁剑…

JavaScript的forEach循环和作用域

forEach循环 var age [12,3,12,3,12,12,1,3,3,123] age.forEach(function(value){console.log(value) }) for(var num in age){ if(age.hasOfProperty(num)){ console.log("存在") console.log(age[num]) } } num是下标位置&#xff0c; 通过get方法获取字符串相…

【算法与数据结构】--常见数据结构--树与图

一、二叉树 二叉树&#xff08;Binary Tree&#xff09;是一种重要的树状数据结构&#xff0c;它由节点构成&#xff0c;每个节点最多有两个子节点&#xff1a;一个左子节点和一个右子节点。这种结构使得二叉树在计算机科学和编程中具有广泛的应用。 1.1 二叉树的基本特性&am…

微查系统,一站式查询,让您的查询更加便捷

微查系统是挖数据一款功能强大的查询系统&#xff0c;是一个集多种查询和核验工具于一身的综合性平台。它可以大大简化企业和个人的查询流程&#xff0c;节省时间和成本&#xff0c;提高查询的准确性和效率。本文将介绍微查系统的主要特点&#xff0c;功能和使用方法&#xff0…

Springboot 集成 WebSocket

WebSocket是一种在单个TCP连接上进行全双工通信的协议。WebSocket使得客户端和服务器之间的数据交换变得更加简单&#xff0c;允许服务端主动向客户端推送数据。在WebSocket API中&#xff0c;浏览器和服务器只需要完成一次握手&#xff0c;两者之间就直接可以创建持久性的连接…

python 批量使图片重新排序

** 导入相关库 ** import os设置图片文件夹的路径 image_folder " D:\\images"获取文件夹中的所有图片文件 image_files [f for f in os.listdir(image_folder) if f.endswith(".jpg")]确保文件夹中至少有一个图片文件 if not image_files:print(&qu…

【SA8295P 源码分析 (一)】52 - 答疑之 QNX 创建镜像、Android修改CMDLINE

【SA8295P 源码分析】52 - 答疑之 QNX 创建镜像、Android修改CMDLINE 一、QNX 侧创建 img 镜像二、QNX 侧指定只编译某一个版本三、Android定制修改selinux权限,user版本采用enforcing,userdebug版本permissive系列文章汇总见:《【SA8295P 源码分析 (一)】系统部分 文章链接…