【Hello Algorithm】暴力递归到动态规划(三)

暴力递归到动态规划(三)

    • 最长公共子序列
      • 递归版本
      • 动态规划
    • 最长回文串子序列
      • 方法一
      • 方法二
      • 递归版本
      • 动态规划
    • 象棋问题
      • 递归版本
      • 动态规划
    • 咖啡机问题
      • 递归版本
      • 动态规划

最长公共子序列

这是leetcode上的一道原题 题目连接如下

最长公共子序列

题目描述如下

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

  • 例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

递归版本

还是一样 我们首先来设计一个函数 函数原型如下

int process(string& str1 , string& str2 , int i , int j)

这个递归函数的含义是 给你两个字符串 s1 和 s2 再给你它们的一个最大下标 现在要求这个函数返回它们公共子序列的最大值

参数表示如下

  • int i : 表示一个字符串str1中的下标
  • int j : 表示一个字符串str2中的下标

还是一样 我们首先想base case

  • 假如i的下标为0 j的下标也为0 此时我们就可以直接返回一个确定的值

代码表示如下

  // base case     if (i == 0 && j == 0)    {    return str1[i] == str2[j] ? 1 : 0;    }  

此时我们排除了i 和 j都为0的情况 剩下了三种情况

  • i j 其中一个为0 (两种)
  • i j都不为0

当i j都不为0时候 我们还要讨论 i j 是否为公共子序列的下标也是分为三种情况

  • i可能是 j不是
  • j可能是 i不是
  • i j都是

之后我们分别将代码全部写好就可以了

 if (i == 0){if (str1[i] == str2[j]){return 1;}else {return process(str1 , str2 , i , j-1);}}else if (j == 0){if (str1[i] == str2[j]){return 1;}else {                                                                                                                           return process(str1 , str2 , i - 1 , j);    }}else  {// j != 0;// i != 0;// possible i  ... jint p1 = process(str1 , str2 , i - 1 , j);int p2 = process(str1 , str2 , i , j - 1);int p3 = str1[i] == str2[j] ? 1 + process(str1 , str2 , i -1 , j -1) : 0 ;return max(p1 , max (p2 , p3));}
}

动态规划

我们观察原递归函数

process(string& str1 , string& str2 , int i , int j)

我们发现变化的值只有 i 和 j

于是我们可以利用i j 做出一张dp表

还是一样 我们首先来看base case

  // base case     if (i == 0 && j == 0)    {    return str1[i] == str2[j] ? 1 : 0;    }  

于是我们就可以把i == 0 并且 j ==0 的这些位置值填好

dp[0][0] = str1[0] == str2[0] ? 1 : 0;

之后根据 i == 0 j ==0 这两个分支继续动规

  for (int j = 1 ; j < static_cast<int>(str2.size()) ; j++){                                                              dp[0][j] = str1[0] == str2[j] ?  1 : dp[0][j-1];             }                                         for (int i = 1 ; i < static_cast<int>(str1.size()) ; i++){                                                        dp[i][0] = str1[i] == str2[0] ? 1 : dp[i-1][0];}

递归的最后一部分依赖三个位置

  else  {// j != 0;// i != 0;// possible i  ... jint p1 = process(str1 , str2 , i - 1 , j);int p2 = process(str1 , str2 , i , j - 1);int p3 = str1[i] == str2[j] ? 1 + process(str1 , str2 , i -1 , j -1) : 0 ;return max(p1 , max (p2 , p3));}

我们只需要再递归表中依次填写即可 代码表示如下

int process1(string& str1, string& str2, vector<vector<int>>& dp)    
{    dp[0][0] = str1[0] == str2[0] ? 1 : 0;    for (int j = 1 ; j < static_cast<int>(str2.size()) ; j++)    {    dp[0][j] = str1[0] == str2[j] ?  1 : dp[0][j-1];    }    for (int i = 1 ; i < static_cast<int>(str1.size()) ; i++)    {    dp[i][0] = str1[i] == str2[0] ? 1 : dp[i-1][0];    }    for (int i = 1 ; i < static_cast<int>(str1.size()) ; i++)    {    for (int j = 1 ; j < static_cast<int>(str2.size()) ; j++)    {    int p1 = dp[i-1][j];    int p2 = dp[i][j-1];    int p3 = str1[i] == str2[j] ? 1 + dp[i-1][j-1] : 0;    dp[i][j] = max(p1 , max(p2 , p3));                                                                                        }    }    return dp[str1.size() - 1][str2.size() - 1];    
}

最长回文串子序列

方法一

做这道题目我们其实可以复用下上面的最长公共子序列的代码来做

我们可以将字符串逆序一下创造出一个新的字符串

再找出这两个字符串的最长公共子序列 我们找出来的最长公共子序列就是回文子序列 (其实我们可以想想两个指针从一个字符串的两端开始查找)

方法二

递归版本

我们写的递归函数如下

int process(string& str , int L , int R)  

它的含义是 我们给定一个字符串str 返回给这个字符串从L到R位置上的最大回文子串

参数含义如下

  • str 我们需要知道回文子串长度的字符串
  • L 我们需要知道回文子串长度的起始位置
  • R 我们需要知道回文子串长度的终止位置

所有的递归函数都一样 我们首先来想base case

这道题目中变化的参数其实就只有L 和 R 所以说我们只需要考虑L和R的base case

如果L和R相等 如果L和R只相差1

  if (L == R)    {              return 1;    }              if (L == R - 1)    {                  return str[L] == str[R] ? 2 : 1;    }      

之后我们来考虑下普遍的可能性

  • 如果L 和 R就是回文子序列的一部分
  • 如果L可能是回文子序列的一部分 R不是
  • 如果L不是回文子序列的一部分 R有可能是

我们按照上面的可能性分析写出下面的代码 之后返回最大值即可

  int p1 = process(str , L + 1 , R);    int p2 = process(str , L , R - 1);int p3 = str[L] == str[R] ? 2 + process(str , L + 1, R - 1) : 0;                                                              return max(max(p1 , p2) , p3);

动态规划

我们注意到原递归函数中 可变参数只有L 和 R 所以说我们只需要围绕着L 和 R建立一张二维表就可以

当然 在一般情况下 L是一定小于等于R的 所以说L大于R的区域我们不考虑

我们首先来看base case

  if (L == R)    {              return 1;    }              if (L == R - 1)    {                  return str[L] == str[R] ? 2 : 1;    }   

围绕着这个base case 我们就可以填写两个对角线的内容

    for (int L = 0; L < str.size(); L++){for(int R = L; R < str.size(); R++){if (L == R){dp[L][R] = 0;}if (L == R-1){dp[L][R-1] = str[L] == str[R] ? 2 : 1;}}                                                                                                                         }

接下来我们看一个格子普遍依赖哪些格子

  int p1 = process(str , L + 1 , R);    int p2 = process(str , L , R - 1);int p3 = str[L] == str[R] ? 2 + process(str , L + 1, R - 1) : 0;          

从上面的代码我们可以看到 分别依赖于

L+1 R  
L , R-1
L+1 , R-1

从图上来分析 黑色的格子依赖于三个红色格子

在这里插入图片描述

于是我们就可以沿着对角线来不断的填写数字

横行一直从0开始 纵列一直在变化 所以我们用列来遍历

最后返回dp[0][str.size()-1]即可

  int process1(string& str ,  vector<vector<int>>& dp){for (int L = 0; L < str.size(); L++){for(int R = 0; R < str.size(); R++){if (L == R){dp[L][R] = 1;}if (L == R-1){dp[L][R] = str[L] == str[R] ? 2 : 1;}}}                                             for (int startR = 2; startR < str.size(); startR++){int L = 0;int R = startR;while (R < str.size()){int p1 = dp[L+1][R];int p2 = dp[L][R-1];int p3 = str[L] == str[R] ? 2 + dp[L+1][R-1] : 0;dp[L][R] = max(p1 , max(p2 , p3));L++;R++;}}return dp[0][str.size()-1];}

象棋问题

递归版本

现在给你一个横长为10 纵长为9的棋盘 给你三个参数 x y z

现在一个马从(0 , 0)位置开始运动

提问 有多少种方法使用K步到指定位置 (指定位置坐标随机给出 且一定在棋盘上)

首先我们可以想出这么一个函数

int process(int x , int y , int rest , int a , int b)   

它象棋目前在 x y位置 还剩下 rest步 目的地是到 a b位置

让你返回一个最多的路数

我们首先来想base case

  • 首先肯定是剩余步数为0 我们要开始判断是否跳到目的地了
  • 其次我们还要判断是否越界 如果越界我们直接返回0即可

代码表示如下

    if (x < 0 || x > 9 || y < 0 || y > 8){return 0;}if (rest == 0){return (x == a && y ==b) ? 1 : 0;}

接下来我们开始讨论普遍情况 其实就是把马的各个位置跳一遍

  int ways = process(x-2 , y+1 , rest-1 , a , b);    ways += process(x-1 , y+2 , rest-1 , a , b);    ways += process(x+1 , y+2 , rest-1 , a , b);    ways += process(x+2 , y+1 , rest-1 , a , b);    ways += process(x-2 , y-1 , rest-1 , a, b);    ways += process(x-1 , y-2 , rest-1 , a , b);    ways += process(x+1 , y-2 , rest-1 , a, b);                                                                                     ways += process(x+2 , y-1 , rest-1 , a ,b);    

其实这样子我们的代码就完成了 总体代码如下

int process(int x , int y , int rest , int a , int b)
{if (x < 0 || x > 9 || y < 0 || y > 8){return 0;}if (rest == 0)    {    return (x == a && y ==b) ? 1 : 0;    }    int ways = process(x-2 , y+1 , rest-1 , a , b);    ways += process(x-1 , y+2 , rest-1 , a , b);    ways += process(x+1 , y+2 , rest-1 , a , b);    ways += process(x+2 , y+1 , rest-1 , a , b);    ways += process(x-2 , y-1 , rest-1 , a, b);    ways += process(x-1 , y-2 , rest-1 , a , b);    ways += process(x+1 , y-2 , rest-1 , a, b);                                                                                     ways += process(x+2 , y-1 , rest-1 , a ,b);    return ways;    
}    

动态规划

我们对于原递归函数进行观察 可以得知

int process(int x , int y , int rest , int a , int b)

原函数中 变化的参数只有 x y 和rest 于是乎我们可以建立一个三维的数组

x的范围是0 ~ 9 y的范围是0 ~ 8 而rest的范围则是根据我们步数来决定的 0~K

所以说此时我们以X为横坐标 Y为纵坐标 REST为竖坐标

vector<vector<vector<int>>> dp(10 , vector<vector<int>>(9 , vector<int>(8 , 0))); 

我们首先看base case分析下

    if (x < 0 || x > 9 || y < 0 || y > 8){return 0;}

如果有越界的地方 我们直接返回0即可

   if (rest == 0){return (x == a && y ==b) ? 1 : 0;}

在z轴为0的时候 我们只需要将a b 0坐标标记为1即可

nt process1(int k , int a , int b , vector<vector<vector<int>>>& dp)
{                             dp[a][b][0] = 1;               for (int z = 1; z <= k; z++)                 {                                          for (int x = 0; x < 10; x++)             {                                          for (int y = 0; y < 9; y++)            {                                      int ways = pickdp(x-2 , y+1 , z-1, dp);ways += pickdp(x-1 , y+2 , z-1 , dp);ways += pickdp(x+1 , y+2 , z-1 , dp);ways += pickdp(x+2 , y+1 , z-1 , dp);ways += pickdp(x-2 , y-1 , z-1 , dp);ways += pickdp(x-1 , y-2 , z-1 , dp);ways += pickdp(x+1 , y-2 , z-1 , dp);                                                                                         ways += pickdp(x+2 , y-1 , z-1 , dp);dp[x][y][z] = ways;}}                }return dp[0][0][k];
}

咖啡机问题

给你一个数组arr arr[i]表示第i号咖啡机泡一杯咖啡德时间

给定一个正数N 表示第N个人等着咖啡机泡咖啡 每台咖啡机只能轮流泡咖啡

只有一台洗咖啡机 一次只能洗一个被子 时间耗费a 洗完才能洗下一杯

当然 每个咖啡杯也能自己挥发干净 挥发干净的时间为b 咖啡机可以并行的挥发

假设所有人拿到咖啡之后立刻喝干净

返回从开始等待到所有咖啡机变干净的最短时间


我们首先来分析下题目

这里其实是两个问题

  • 问题一 每个人喝咖啡喝完的时间是多少
  • 问题二 每个人洗完的时间是多少

对于问题一 我们可以使用一个小根堆来做

我们定义一个机器类 里面有两个成员函数

机器的开始时间和机器的使用时间 我们使用它们相加之和来作为小根堆排序的依据

之后我们就能得到每个人喝完咖啡的最优解了

class Machine     
{    public:    int _starttime;    int _worktime;    public:    int getsum() const    {    return _starttime + _worktime;    }    public:    Machine() = default;    Machine(int st , int wt)    :_starttime(st)    ,_worktime(wt)    {}    bool operator()(const Machine& obj1 , const Machine& obj2)    {    return obj1.getsum() > obj2.getsum();    }    
};   
vector<int>  process(vector<int>& arr , int num) 
{vector<int> ans;priority_queue<Machine , vector<Machine> , Machine> heap;for (auto x : arr)                                                                                                                  {heap.push(Machine(0 , x));}for (int i = 0; i < num; i++){Machine cur  = heap.top();heap.pop();ans.push_back(cur.getsum());cur._starttime += cur._worktime;heap.push(Machine(cur._starttime , cur._worktime));}return ans;
}

递归版本

我们在写递归版本的时候首先要想到递归函数的含义

它的含义是返回一个所有咖啡杯都被洗完的最小值

之后我们可以想base case 当什么样的时候 该函数无法递归了

最后列出所有可能性即可

int process(vector<int>& end , int index , int a , int b , int avltime)
{if (index == static_cast<int>(end.size())){return 0;}    // possible 1     int p1 = max(a + end[index] , process(end , index+1 , a , b , avltime));    // possible 2    int p2 = max(b + end[index], process(end , index+1 , a , b , avltime + b));                                                         return min(p1 , p2);    
}

动态规划

这个问题的动态规划涉及到一个大小问题

因为我们无法确定avltime使用到的时间 所以这里有两种解决方案

  • 将它开辟的足够大
  • 根据最大值计算 (假设所有人都用咖啡机洗)
int dpprocess(vector<int>& end , int a , int b , vector<vector<int>> dp)
{// dp[N][...] = 0;for (int indexdp = static_cast<int>(end.size()) - 1; indexdp >= 0 ; indexdp--){for (int freetime = 0; freetime <= 10000 ; freetime++){int p1 = max(a + end[indexdp] , dp[indexdp+1][freetime]);int p2 = max(b + end[indexdp] , dp[indexdp+1][freetime+b]);dp[indexdp][freetime] = min(p1 , p2);}}return dp[0][0];
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/108366.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在 rider 里用配置 Perforce(P4)的注意事项

整个配置界面里&#xff0c;关键就配2处位置&#xff0c;但是都有些误导性。 1是连接形参的4个参数都得填&#xff0c;字符集看你项目的要求&#xff0c;这里工作区其实指的是你的工作空间&#xff0c;还不如显示英文的 Workspace 呢&#xff0c;搞得我一开始没填&#xff0c;…

【数字IC设计】DC自动添加门控时钟

简介 数字电路的动态功耗主要是由于寄存器翻转带来的&#xff0c;为了降低芯片内部功耗&#xff0c;门控时钟的方案应运而生。作为低功耗设计的一种方法&#xff0c;门控时钟是指在数据无效时将寄存器的时钟关闭&#xff0c;以此来降低动态功耗。 在下图中&#xff0c;展示了…

软信天成:流程管理是企业精细化管理的一大利器

流程管理&#xff08;BPM&#xff09;是指组织和管理内部或跨部门的工作流程&#xff0c;主要包括设计、建模、执行、监控和优化业务流程&#xff0c;确保工作按照标准化的步骤进行&#xff0c;从而提高效率、降低成本&#xff0c;促进业务增长。 一、流程管理生命周期五大步骤…

Hadoop3教程(九):MapReduce框架原理概述

文章目录 简介参考文献 简介 这属于整个MR中最核心的一块&#xff0c;后续小节会展开描述。 整个MR处理流程&#xff0c;是分为Map阶段和Reduce阶段。 一般&#xff0c;我们称Map阶段的进程是MapTask&#xff0c;称Reduce阶段是ReduceTask。 其完整的工作流程如图&#xff…

2023亿发智能数字化解决方案供应商,贵州一体化企业信息管理系统

企业数字化服务的解决方案是指运用数字技术对企业运营进行全方位的数字化升级和优化&#xff0c;提供以数字化服务为核 心的全面解决方案&#xff0c;解决企业在数字化转型过程中面临的技术和业务难题。 数字化服务解决方案的功能 在数字化时代的背景下&#xff0c;贵州企业的…

【微信小程序】数字化会议OA系统之首页搭建(附源码)

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是Java方文山&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的专栏《微信小程序开发实战》。&#x1f3af;&#x1f3a…

警惕这款记录音频和电话的Android木马软件SpyNote

导语&#xff1a;近日&#xff0c;一款名为SpyNote的Android木马软件被揭示出其多样化的信息收集功能。该木马软件通常通过短信钓鱼攻击传播&#xff0c;攻击链通过欺骗潜在受害者点击嵌入链接来安装该应用程序。除了要求入侵性权限以访问通话记录、摄像头、短信和外部存储等&a…

python+django高校体育乒乓球场地预约管理系统_s2409

本系统提供给管理员对首页&#xff0c;个人中心&#xff0c;用户管理&#xff0c;乒乓球场管理,场地类型管理,场地预约管理,暂离申请管理,离开申请管理,管理员管理,留言反馈,系统管理等诸多功能进行管理。本系统对于用户输入的任何信息都进行了一定的验证&#xff0c;为管理员操…

C++项目实战——基于多设计模式下的同步异步日志系统-⑫-日志宏全局接口设计(代理模式)

文章目录 专栏导读日志宏&全局接口设计全局接口测试项目目录结构整理示例代码拓展示例代码 专栏导读 &#x1f338;作者简介&#xff1a;花想云 &#xff0c;在读本科生一枚&#xff0c;C/C领域新星创作者&#xff0c;新星计划导师&#xff0c;阿里云专家博主&#xff0c;C…

【前端学习】—bind、call、apply(四)

【前端学习】—bind、call、apply(四) 一、代码题 <script>var name="freeman";function sayAuthor(){var name=

PCLVisualizer显示点云的深层用法

以下代码均是在QT中使用QVTKOpenGLNativeWidget的简单教程以及案例-CSDN博客文章的基础上&#xff0c;修改按钮对应的槽函数中的程序。 1.显示文件中点云颜色属性信息&#xff0c;利用PointCloudColorHandlerRGBField得到每个点云对应的颜色。 pcl::PointCloud<pcl::PointX…

Vuex中多个参数显示undefined的解决方案

笔者今天在使用Vuex中的mutations改变state里面的全局状态的值&#xff0c;获取到的数据却怎么都是第一个参数是可以获取到,但是第二个就获取不到&#xff0c;就显示undefined 问题代码 mutations: {multiparameter(state,id,newStatus) {console.log("数据的Key&#x…

【前端】Js

目 录 一.前置知识第一个程序JavaScript 的书写形式注释输入输出 二.语法概览变量的使用理解 动态类型基本数据类型 三.运算符算术运算符赋值运算符 & 复合赋值运算符自增自减运算符比较运算符逻辑运算符位运算移位运算 四.条件语句if 语句三元表达式switch 五.循环语句whi…

ORA-12541:TNS:no listener 无监听程序

问题截图 解决方法 1、删除Listener 新建一个新的 2、主机为服务器ip 3、设置数据库环境 只需要设置实例名不需要设置路径 4、服务命名 一样设置为ip 服务名与监听名一直 eg&#xff1a;orcl

Variations-of-SFANet-for-Crowd-Counting记录

论文&#xff1a;Encoder-Decoder Based Convolutional Neural Networks with Multi-Scale-Aware Modules for Crowd Counting 论文链接&#xff1a;https://arxiv.org/abs/2003.05586 源码链接&#xff1a;GitHub - Pongpisit-Thanasutives/Variations-of-SFANet-for-Crowd-C…

云原生场景下高可用架构的最佳实践

作者&#xff1a;刘佳旭&#xff08;花名&#xff1a;佳旭&#xff09;&#xff0c;阿里云容器服务技术专家 引言 随着云原生技术的快速发展以及在企业 IT 领域的深入应用&#xff0c;云原生场景下的高可用架构&#xff0c;对于企业服务的可用性、稳定性、安全性越发重要。通…

GFS分布式文件系统实验

GFS概念 Gluster 是一个开源的分布式文件系统 它是一个C/S架构 由存储服务器、客户端以及NFS/Samba存储网关组成 没有元数据服务器组件&#xff0c;这有助于提升整个系统的性能&#xff0c;可靠性和稳定性 文件系统定义 负责实现数据存储方式&#xff0c;以什么格式保存在…

Spring5应用之高级注解开发

作者简介&#xff1a;☕️大家好&#xff0c;我是Aomsir&#xff0c;一个爱折腾的开发者&#xff01; 个人主页&#xff1a;Aomsir_Spring5应用专栏,Netty应用专栏,RPC应用专栏-CSDN博客 当前专栏&#xff1a;Spring5应用专栏_Aomsir的博客-CSDN博客 文章目录 参考文献前言Conf…

CentOS 7 部署Jellyfin详细教程

前言 Jellyfin是免费、开源的媒体服务器解决方案&#xff0c;它能让我们轻松地管理和访问个人媒体文件&#xff0c;如电影、音乐等。本文将向您介绍如何快速搭建和部署Jellyfin&#xff0c;并分享一些最佳实践和技巧&#xff0c;帮助您更好地利用这个强大的媒体服务器解决方案。…

2.MySQL表的操作

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 表的操作 (1)表的创建 CREATE TABLE table_name ( field1 datatype, field2 datatype, field3 datatype ) character set 字符集 collate 校验规则 engine 存储引擎; 存储引擎的不同会导致创建表的文件不同。 换个引擎。 t…