基于OpenCV的红绿灯识别

基于OpenCV的红绿灯识别

技术背景

为了实现轻舟航天机器人实现红绿灯的识别,决定采用传统算法OpenCV视觉技术。

技术介绍

航天机器人的红绿灯识别主要基于传统计算机视觉技术,利用OpenCV算法对视频流进行处理,以获取红绿灯的状态信息。具体而言,该系统通过连接工控机摄像头读取视频流,将视频帧转换成HSV色彩空间的图像,以便更好地识别出图像中的红色像素。

HSV是一种将RGB色彩空间中的点在倒圆锥体中的表示方法,其中色相、饱和度和亮度分别用于描述颜色的不同属性。色调(H)用角度度量,其取值范围为0°~360°,从红色开始按逆时针方向计算,具体的光谱色如黄色、青色和品红等的色调取值为60°、180°和300°,而它们的补色则分别为青色、洋红和黄色。饱和度(S)用于描述颜色接近光谱色的程度,其取值范围为0%~100%,值越大,颜色越饱和。亮度(V)表示颜色明亮的程度,其取值范围为0%(黑)到100%(白)。

在红绿灯识别过程中,系统将视频帧转换成HSV图像后,通过筛选出所有红色像素值,利用切片技术切出图像中的红绿灯兴趣区域。接着,系统通过统计区域中红色像素块数量,设定阈值来判断红绿灯的状态,如果红色像素块数量超过阈值,则判定红绿灯为红灯闪烁,小车禁止通行;反之,如果红色像素块数量小于阈值,则判定红绿灯为绿灯闪烁,小车可以通行。

这种基于传统计算机视觉技术的红绿灯识别系统具有精度高、鲁棒性强等优点,可以在复杂的环境下准确地判断红绿灯的状态,从而为机器人的自主导航和交通安全提供可靠的技术支持。

HSV 模型的三维表示从 RGB 立方体演化而来。设想从 RGB 沿立方体对角线的白色顶点 向黑色顶点观察,就可以看到立方体的六边形外形。六边形边界表示色彩,水平轴表示纯度, 明度沿垂直轴测量。HSV 颜色空间可以用一个圆锥空间模型来描述。圆锥的顶点处,V=0,H 和 S 无定义,代表黑色。圆锥的顶面中心处 V=max,S=0,H 无定义,代表白色。

在这里插入图片描述

代码实现


import cv2
import numpy as np# from cv_nano3_good import Img, Video
def gstreamer_pipeline(capture_width=1280,capture_height=720,display_width=1280,display_height=720,framerate=120,flip_method=0,
):return ("nvarguscamerasrc ! ""video/x-raw(memory:NVMM), width=(int)%d, height=(int)%d, format=(string)NV12, framerate=(fraction)%d/1! ""nvvidconv flip-method=%d ! ""video/x-raw, width=(int)%d, height=(int)%d, format=(string)BGRx ! ""videoconvert ! ""video/x-raw, format=(string)BGR ! ""appsink"% (capture_width,capture_height,framerate,flip_method,display_width,display_height,))def extract_red(img):#转换为hsv颜色空间img_hsv=cv2.cvtColor(img,cv2.COLOR_BGR2HSV)rows,cols,channels=img.shapelower_red=np.array([156,43,46])# lower_red=np.array([157,177,122])# print(lower_red)upper_red=np.array([180,255,255])# print(upper_red)mask1=cv2.inRange(img_hsv,lower_red,upper_red)#拼接两个区间mask=mask1return maskif __name__=='__main__':# if cv2.VideoCapture.isOpened():Video = cv2.VideoCapture(gstreamer_pipeline(flip_method=0), cv2.CAP_GSTREAMER)print('open cam success')while True:while True:ret, Img = Video.read()# cap=cv2.VideoCapture("./test/light.mp4")# Img=cv2.imread("./test/02.jpg")# ret, Img = img.read()# cv2.imshow('./',Img)# print(Img.)img = extract_red(Img)# print(img)h, w = Img.shape[0], Img.shape[1]# print(h)# print(w)# img_cut = img[100:400, 330:600]img_cut=img[450:600,800:1100] #截取roiraw_cut = Img[450:600, 800:1100]# cv2.imshow('./',raw_cut)# cv2.waitKey(0)# cv2.imshow('./',img_cut)# cv2.waitKey(0)count = 0x = img_cut[np.where(img_cut > 250)]count = len(x)print(count)if count >= 1500:print('red')# green_light.publish(False)else:print('green')# cv2.waitKey(30)# green_light.publish(True) 

实现思路:

调取工控机摄像头读取视频流,将图像转成
HSV 通道,筛选出图像中的所有红色的像素值,再利用切片切出图像的兴趣区域,即红绿灯的所在图像
区域,最后统计区域中的红色像素块数量并设定阈值,超过此阈值则可判定红绿灯为红灯闪烁,小车禁
止通行,低于此阈值则可判定红绿灯为绿灯闪烁, 小车可以通行。

具体代码逻辑

这段代码的主要功能是从摄像头或视频流中读取图像,对图像进行红色像素的筛选和统计,以判断红绿灯的状态并输出结果。具体实现过程如下:

  1. 首先定义了一个函数gstreamer_pipeline,用于设置摄像头或视频流的参数,包括分辨率、帧率、翻转方式等。
  2. 接着定义了一个名为extract_red的函数,用于从图像中提取红色像素。该函数首先将图像从BGR色彩空间转换为HSV色彩空间,然后通过设置上下阈值提取红色像素。
  3. 在主程序中,通过调用cv2.VideoCapture函数连接摄像头或视频流,并循环读取图像。对于每一帧图像,首先调用extract_red函数提取红色像素,然后截取图像中的兴趣区域(即红绿灯的所在图像区域),并统计区域中红色像素块数量。如果红色像素块数量超过预设阈值,则判定红绿灯为红灯闪烁,否则判定为绿灯闪烁。
  4. 在输出判断结果后,程序会继续循环读取下一帧图像,直到程序被手动中断。

总的来说,该段代码主要实现了利用OpenCV对摄像头或视频流中的图像进行红绿灯状态判断的功能,其中最核心的部分是对红色像素的筛选和区域中红色像素块数量的统计。

总结

本文介绍了轻舟航天机器人实现红绿灯识别的技术背景和介绍。该系统利用OpenCV算法对视频流进行处理,识别出图像中的红色像素,并设定阈值来判断红绿灯的状态。该系统具有精度高、鲁棒性强等优点,可以为机器人的自主导航和交通安全提供技术支持。文章还介绍了HSV颜色空间的三维表示和代码实现过程仅供了解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/10797.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

甘特图 Dhtmlx Gantt

介绍 在一些任务计划、日程进度等场景中我们会使用到甘特图,Dhtmlx Gantt 对于甘特图的实现支持很友好,文档API介绍全面,虽然增强版的收费,但免费版的足以够用。 官网:https://docs.dhtmlx.com/gantt/ 安装dhtml gannt…

Linux6.16 Docker consul的容器服务更新与发现

文章目录 计算机系统5G云计算第四章 LINUX Docker consul的容器服务更新与发现一、consul 概述1.什么是服务注册与发现2.什么是consul 二、consul 部署1.consul服务器2.registrator服务器3.consul-template4.consul 多节点 计算机系统 5G云计算 第四章 LINUX Docker consul的…

PHP数组转对象和对象转数组

PHP数组转对象和对象转数组 <?php function array_to_object($arr){$obj new stdClass();foreach ($arr as $key > $val) {if (is_array($val) || is_object($val)) {$obj->$key array_to_object($val);} else {$obj->$key $val;}}return $obj; } function o…

项目文档管理的基本指南

项目文档是一种关键的项目管理资源&#xff0c;它可以提供清晰度&#xff0c;保证参与项目的每个人都在同一页面上&#xff0c;从而确保项目按时、按预算完成。 本文将讨论项目文档的重要性、如何在项目中使用项目文档以及选择好合适的项目文档管理软件的技巧。 什么是项目文…

分布式微服务架构下网络通信的底层实现原理

在分布式架构中&#xff0c;网络通信是底层基础&#xff0c;没有网络&#xff0c;也就没有所谓的分布式架构。只有通过网络才能使得一大片机器互相协作&#xff0c;共同完成一件事情。 同样&#xff0c;在大规模的系统架构中&#xff0c;应用吞吐量上不去、网络存在通信延迟、我…

DevOps-Git

DevOps-Git 版本控制软件提供完备的版本管理功能&#xff0c;用于存储&#xff0c;追踪目录&#xff08;文件夹&#xff09;和文件的修改历史。版本控制软件的最高目标是支持公司的配置管理活动&#xff0c;最终多个版本的开发和维护活动&#xff0c;即使发布软件。 git安装 h…

K8S初级入门系列之十二-计算资源管理

一、前言 K8S集群中着这各类资源&#xff0c;比如计算资源&#xff0c;API资源等&#xff0c;其中最重要的是计算资源&#xff0c;包括CPU&#xff0c;缓存&#xff0c;存储等。管理这些资源就是要在资源创建时进行约束和限制&#xff0c;在运行时监控这些资源的指标&#xff0…

回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLA…

idea中创建请求基本操作

文章目录 说明效果创建GET请求没有参数带有参数带有环境变量带有动态参数 说明 首先通过###三个井号键来分开每个请求体&#xff0c;然后请求url和header参数是紧紧挨着的&#xff0c;请求参数不管是POST的body传参还是GET的parameter传参&#xff0c;都是要换行的&#xff0c;…

OSI模型简介及socket,tcp,http三者之间的区别和原理

1.OSI模型简介&#xff08;七层网络模型&#xff09; OSI 模型(Open System Interconnection model)&#xff1a;一个由国际标准化组织提出的概念模型&#xff0c;试图提供一个使各种不同的计算机和网络在世界范围内实现互联的标准框架。 它将计算机网络体系结构划分为七层,每…

苹果safari浏览器播放不了video标签视频

今天遇到了个神奇的问题&#xff0c;视频文件在pc端和安卓手机上播放都没问题&#xff0c;但是在ios上就是播放不了&#xff0c;大概代码如下&#xff1a; 前端代码&#xff1a; <video id"video" width"350" height"500" controls><s…

EMP-SSL: TOWARDS SELF-SUPERVISED LEARNING IN ONETRAINING EPOCH

Recently, self-supervised learning (SSL) has achieved tremendous success in learning image representation. Despite the empirical success, most self-supervised learning methods are rather “inefficient” learners, typically taking hundreds of training epoch…

TCP状态转换图

TCP状态转换图 了解TCP状态转换图可以帮助开发人员查找问题. 说明: 上图中粗线表示主动方, 虚线表示被动方, 细线部分表示一些特殊情况, 了解即可, 不必深入研究. 对于建立连接的过程客户端属于主动方, 服务端属于被动接受方(图的上半部分) 而对于关闭(图的下半部分), 服务端…

政策加持智能家居市场,涂鸦赋能客户打造“以人为本”智能生活新方式

7月18日&#xff0c;商务部等13部门联合发布了《关于促进家居消费若干措施的通知》&#xff08;以下简称《通知》&#xff09;&#xff0c;《通知》指出&#xff0c;创新培育智能消费&#xff0c;支持企业运用物联网、云计算、人工智能等技术&#xff0c;着重加快智能家电、智能…

无涯教程-jQuery - jQuery.get( url, data, callback, type )方法函数

jQuery.get(url&#xff0c;[data]&#xff0c;[callback]&#xff0c;[type])方法使用GET HTTP请求从服务器加载数据。 该方法返回XMLHttpRequest对象。 jQuery.get( url, [data], [callback], [type] ) - 语法 $.get( url, [data], [callback], [type] ) 这是此方法使用的…

【数据结构】实验二:顺序表

实验二 顺序表 一、实验目的与要求 1&#xff09;熟悉顺序表的类型定义&#xff1b; 2&#xff09;熟悉顺序表的基本操作&#xff1b; 3&#xff09;灵活应用顺序表解决具体应用问题。 二、实验内容 1&#xff09;在一个整数序列a1,a2,…,an中&#xff0c;若存在一个数&…

【Linux网络】 网络套接字(三)socket编程_TCP网络程序

目录 TCP网络程序服务端创建套接字并绑定服务端监听服务端获取连接服务器处理请求 客户端客户端创建套接字客户端连接服务器客户端发起请求测试 服务器存在的问题多进程版的TCP网络程序多线程版的TCP网络程序线程池版的TCP网络程序 TCP网络程序总结图 TCP网络程序 服务端 创建…

Dubbo

Dubbo 简介Dubbo的快速入门Dubbo的基本架构安装DubboAdmin入门案例Dubbo的最佳实践 Dubbo的高级特性启动检查多版本超时与重试负载均衡SpringCloud整合Dubbo案例 简介 Dubbo是阿里巴巴公司开源的一个高性能、轻量级的Java RPC框架。 致力于提高性能和透明化的RPC远程服务调用方…

Jenkins+Docker+Docker-Compose自动部署,SpringCloud架构公共包一个任务配置

前言 Jenkins和docker的安装&#xff0c;随便百度吧&#xff0c;实际场景中我们很多微服务的架构&#xff0c;都是有公共包&#xff0c;肯定是希望一个任务能够把公共包的配置加进去&#xff0c;一并构建&#xff0c;ok&#xff0c;直接上干货。 Jenkins 全局环境安装 pwd e…

DSA之图(4):图的应用

文章目录 0 图的应用1 生成树1.1 无向图的生成树1.2 最小生成树1.2.1 构造最小生成树1.2.2 Prim算法构造最小生成树1.2.3 Kruskal算法构造最小生成树1.2.4 两种算法的比较 1.3 最短路径1.3.1 两点间最短路径1.3.2 某源点到其他各点最短路径1.3.3 Dijkstra1.3.4 Floyd 1.4 拓扑排…