OSI模型简介及socket,tcp,http三者之间的区别和原理

1.OSI模型简介(七层网络模型)

OSI 模型(Open System Interconnection model):一个由国际标准化组织提出的概念模型,试图提供一个使各种不同的计算机和网络在世界范围内实现互联的标准框架。
它将计算机网络体系结构划分为七层,每层都可以提 供抽象良好的接口。了解 OSI 模型有助于理解实际上互联网络的工业标准——TCP/IP 协议
OSI 模型各层间关系和通讯时的数据流向如图所示: 

显然、如果一个东西想包罗万象、一般时不可能的;在实际的开发应用中一般时在此模型的基础上进行裁剪、整合!

七层模型介绍

  • 物理层:
    物理层负责最后将信息编码成电流脉冲或其它信号用于网上传输;
    eg:RJ45等将数据转化成0和1;
  • 数据链路层:
    数据链路层通过物理网络链路提供数据传输。不同的数据链路层定义了不同的网络和协 议特征,其中包括物理编址、网络拓扑结构、错误校验、数据帧序列以及流控;
    可以简单的理解为:规定了0和1的分包形式,确定了网络数据包的形式;
  • 网络层
    网络层负责在源和终点之间建立连接;
    可以理解为,此处需要确定计算机的位置,怎么确定?IPv4,IPv6!
  • 传输层
    传输层向高层提供可靠的端到端的网络数据流服务。
    可以理解为:每一个应用程序都会在网卡注册一个端口号,该层就是端口与端口的通信!常用的(TCP/IP)协议;
  • 会话层
    会话层建立、管理和终止表示层与实体之间的通信会话;
    建立一个连接(自动的手机信息、自动的网络寻址);
  • 表示层:
    表示层提供多种功能用于应用层数据编码和转化,以确保以一个系统应用层发送的信息 可以被另一个系统应用层识别;
    可以理解为:解决不同系统之间的通信,eg:Linux下的QQ和Windows下的QQ可以通信;
  • 应用层:
    OSI 的应用层协议包括文件的传输、访问及管理协议(FTAM) ,以及文件虚拟终端协议(VIP)和公用管理系统信息(CMIP)等;
    规定数据的传输协议:

 

 OSI7层模型的小结:
由于OSI是一个理想的模型,因此一般网络系统只涉及其中的几层,很少有系统能够具有所有的7层,并完全遵循它的规定。
在7层模型中,每一层都提供一个特殊的网络功能。从网络功能的角度观察:下面4层(物理层、数据链路层、网络层和传输层)主要提供数据传输和交换功能,即以节点到节点之间的通信为主;第4层作为上下两部分的桥梁,是整个网络体系结构中最关键的部分;而上3层(会话层、表示层和应用层)则以提供用户与应用程序之间的信息和数据处理功能为主。简言之,下4层主要完成通信子网的功能,上3层主要完成资源子网的功能。

以下是TCP/IP分层模型:

2.socket,tcp,http三者之间的区别和原理

  • 7    应用层    例如HTTP、SMTP、SNMP、FTP、Telnet、SIP、SSH、NFS、RTSP、XMPP、Whois、ENRP
  • 6    表示层    例如XDR、ASN.1、SMB、AFP、NCP
  • 5    会话层    例如ASAP、TLS、SSH、ISO 8327 / CCITT X.225、RPC、NetBIOS、ASP、Winsock、BSD sockets
  • 4    传输层    例如TCP、UDP、RTP、SCTP、SPX、ATP、IL
  • 3    网络层    例如IP、ICMP、IGMP、IPX、BGP、OSPF、RIP、IGRP、EIGRP、ARP、RARP、 X.25
  • 2    数据链路层    例如以太网、令牌环、HDLC、帧中继、ISDN、ATM、IEEE 802.11、FDDI、PPP
  • 1    物理层    例如线路、无线电、光纤、信鸽

1、TCP/IP连接

手机能够使用联网功能是因为手机底层实现了TCP/IP协议,可以使手机终端通过无线网络建立TCP连接。TCP协议可以对上层网络提供接口,使上层网络数据的传输建立在“无差别”的网络之上。

TCP连接需要经过“三次握手”:

 

 

第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SENT状态,等待服务器确认;SYN:同步序列编号(Synchronize Sequence Numbers)。

第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态。

第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED(TCP连接成功)状态,完成三次握手。

断开过程:四次挥手

 

 常见问题:

【问题1】为什么连接的时候是三次握手,关闭的时候却是四次握手?

答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,"你发的FIN报文我收到了"。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。

【问题2】为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可以最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。在Client发送出最后的ACK回复,但该ACK可能丢失。Server如果没有收到ACK,将不断重复发送FIN片段。所以Client不能立即关闭,它必须确认Server接收到了该ACK。Client会在发送出ACK之后进入到TIME_WAIT状态。Client会设置一个计时器,等待2MSL的时间。如果在该时间内再次收到FIN,那么Client会重发ACK并再次等待2MSL。所谓的2MSL是两倍的MSL(Maximum Segment Lifetime)。MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果直到2MSL,Client都没有再次收到FIN,那么Client推断ACK已经被成功接收,则结束TCP连接。

【问题3】为什么不能用两次握手进行连接?

答:3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。

       现在把三次握手改成仅需要两次握手,死锁是可能发生的。作为例子,考虑计算机S和C之间的通信,假定C给S发送一个连接请求分组,S收到了这个分组,并发 送了确认应答分组。按照两次握手的协定,S认为连接已经成功地建立了,可以开始发送数据分组。可是,C在S的应答分组在传输中被丢失的情况下,将不知道S 是否已准备好,不知道S建立什么样的序列号,C甚至怀疑S是否收到自己的连接请求分组。在这种情况下,C认为连接还未建立成功,将忽略S发来的任何数据分 组,只等待连接确认应答分组。而S在发出的分组超时后,重复发送同样的分组。这样就形成了死锁。

【问题4】如果已经建立了连接,但是客户端突然出现故障了怎么办?

TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

2、HTTP连接

HTTP协议即超文本传送协议(Hypertext Transfer Protocol ),是Web联网的基础,也是手机联网常用的协议之一,HTTP协议是建立在TCP协议之上的一种应用。

HTTP连接最显著的特点是客户端发送的每次请求都需要服务器回送响应,在请求结束后,会主动释放连接。从建立连接到关闭连接的过程称为“一次连接”。

1)在HTTP 1.0中,客户端的每次请求都要求建立一次单独的连接,在处理完本次请求后,就自动释放连接。

2)在HTTP 1.1中则可以在一次连接中处理多个请求,并且多个请求可以重叠进行,不需要等待一个请求结束后再发送下一个请求。

由于HTTP在每次请求结束后都会主动释放连接,因此HTTP连接是一种“短连接”,要保持客户端程序的在线状态,需要不断地向服务器发起连接请求。通常的做法是即时不需要获得任何数据,客户端也保持每隔一段固定的时间向服务器发送一次“保持连接”的请求,服务器在收到该请求后对客户端进行回复,表明知道客户端“在线”。若服务器长时间无法收到客户端的请求,则认为客户端“下线”,若客户端长时间无法收到服务器的回复,则认为网络已经断开。

3、SOCKET原理

3.1套接字(socket)概念

套接字(socket)是通信的基石,是支持TCP/IP协议的网络通信的基本操作单元。它是网络通信过程中端点的抽象表示,包含进行网络通信必须的五种信息:连接使用的协议,本地主机的IP地址,本地进程的协议端口,远地主机的IP地址,远地进程的协议端口。

应用层通过传输层进行数据通信时,TCP会遇到同时为多个应用程序进程提供并发服务的问题。多个TCP连接或多个应用程序进程可能需要通过同一个 TCP协议端口传输数据。为了区别不同的应用程序进程和连接,许多计算机操作系统为应用程序与TCP/IP协议交互提供了套接字(Socket)接口。应
用层可以和传输层通过Socket接口,区分来自不同应用程序进程或网络连接的通信,实现数据传输的并发服务。

3.2 建立socket连接

建立Socket连接至少需要一对套接字,其中一个运行于客户端,称为ClientSocket ,另一个运行于服务器端,称为ServerSocket 。

套接字之间的连接过程分为三个步骤:服务器监听,客户端请求,连接确认。

服务器监听:服务器端套接字并不定位具体的客户端套接字,而是处于等待连接的状态,实时监控网络状态,等待客户端的连接请求。

客户端请求:指客户端的套接字提出连接请求,要连接的目标是服务器端的套接字。为此,客户端的套接字必须首先描述它要连接的服务器的套接字,指出服务器端套接字的地址和端口号,然后就向服务器端套接字提出连接请求。

连接确认:当服务器端套接字监听到或者说接收到客户端套接字的连接请求时,就响应客户端套接字的请求,建立一个新的线程,把服务器端套接字的描述发给客户端,一旦客户端确认了此描述,双方就正式建立连接。而服务器端套接字继续处于监听状态,继续接收其他客户端套接字的连接请求。

4、SOCKET连接与TCP/IP连接

创建Socket连接时,可以指定使用的传输层协议,Socket可以支持不同的传输层协议(TCP或UDP),当使用TCP协议进行连接时,该Socket连接就是一个TCP连接。

socket则是对TCP/IP协议的封装和应用(程序员层面上)。也可以说,TPC/IP协议是传输层协议,主要解决数据 如何在网络中传输,而HTTP是应用层协议,主要解决如何包装数据。关于TCP/IP和HTTP协议的关系,网络有一段比较容易理解的介绍:

“我们在传输数据时,可以只使用(传输层)TCP/IP协议,但是那样的话,如果没有应用层,便无法识别数据内容,如果想要使传输的数据有意义,则必须使用到应用层协议,应用层协议有很多,比如HTTP、FTP、TELNET等,也可以自己定义应用层协议。WEB使用HTTP协议作应用层协议,以封装HTTP文本信息,然后使用TCP/IP做传输层协议将它发到网络上。”

我们平时说的最多的socket是什么呢,实际上socket是对TCP/IP协议的封装,Socket本身并不是协议,而是一个调用接口(API),通过Socket,我们才能使用TCP/IP协议。 实际上,Socket跟TCP/IP协议没有必然的联系。Socket编程接口在设计的时候,就希望也能适应其他的网络协议。所以说,Socket的出现 只是使得程序员更方便地使用TCP/IP协议栈而已,是对TCP/IP协议的抽象,从而形成了我们知道的一些最基本的函数接口,比如create、 listen、connect、accept、send、read和write等等。网络有一段关于socket和TCP/IP协议关系的说法比较容易理
解:

“TCP/IP只是一个协议栈,就像操作系统的运行机制一样,必须要具体实现,同时还要提供对外的操作接口。这个就像操作系统会提供标准的编程接口,比如win32编程接口一样,TCP/IP也要提供可供程序员做网络开发所用的接口,这就是Socket编程接口。” 

实际上,传输层的TCP是基于网络层的IP协议的,而应用层的HTTP协议又是基于传输层的TCP协议的,而Socket本身不算是协议,就像上面所说,它只是提供了一个针对TCP或者UDP编程的接口。socket是对端口通信开发的工具,它要更底层一些.

5、Socket连接与HTTP连接

由于通常情况下Socket连接就是TCP连接,因此Socket连接一旦建立,通信双方即可开始相互发送数据内容,直到双方连接断开。但在实际网络应用中,客户端到服务器之间的通信往往需要穿越多个中间节点,例如路由器、网关、防火墙等,大部分防火墙默认会关闭长时间处于非活跃状态的连接而导致 Socket 连接断连,因此需要通过轮询告诉网络,该连接处于活跃状态。

而HTTP连接使用的是“请求—响应”的方式,不仅在请求时需要先建立连接,而且需要客户端向服务器发出请求后,服务器端才能回复数据。

很多情况下,需要服务器端主动向客户端推送数据,保持客户端与服务器数据的实时与同步。此时若双方建立的是Socket连接,服务器就可以直接
将数据传送给客户端;若双方建立的是HTTP连接,则服务器需要等到客户端发送一次请求后才能将数据传回给客户端,因此,客户端定时向服务器端发送连接请
求,不仅可以保持在线,同时也是在“询问”服务器是否有新的数据,如果有就将数据传给客户端。

http协议是应用层的协义 

有个比较形象的描述:HTTP是轿车,提供了封装或者显示数据的具体形式;Socket是发动机,提供了网络通信的能力。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/10780.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

苹果safari浏览器播放不了video标签视频

今天遇到了个神奇的问题&#xff0c;视频文件在pc端和安卓手机上播放都没问题&#xff0c;但是在ios上就是播放不了&#xff0c;大概代码如下&#xff1a; 前端代码&#xff1a; <video id"video" width"350" height"500" controls><s…

EMP-SSL: TOWARDS SELF-SUPERVISED LEARNING IN ONETRAINING EPOCH

Recently, self-supervised learning (SSL) has achieved tremendous success in learning image representation. Despite the empirical success, most self-supervised learning methods are rather “inefficient” learners, typically taking hundreds of training epoch…

TCP状态转换图

TCP状态转换图 了解TCP状态转换图可以帮助开发人员查找问题. 说明: 上图中粗线表示主动方, 虚线表示被动方, 细线部分表示一些特殊情况, 了解即可, 不必深入研究. 对于建立连接的过程客户端属于主动方, 服务端属于被动接受方(图的上半部分) 而对于关闭(图的下半部分), 服务端…

政策加持智能家居市场,涂鸦赋能客户打造“以人为本”智能生活新方式

7月18日&#xff0c;商务部等13部门联合发布了《关于促进家居消费若干措施的通知》&#xff08;以下简称《通知》&#xff09;&#xff0c;《通知》指出&#xff0c;创新培育智能消费&#xff0c;支持企业运用物联网、云计算、人工智能等技术&#xff0c;着重加快智能家电、智能…

无涯教程-jQuery - jQuery.get( url, data, callback, type )方法函数

jQuery.get(url&#xff0c;[data]&#xff0c;[callback]&#xff0c;[type])方法使用GET HTTP请求从服务器加载数据。 该方法返回XMLHttpRequest对象。 jQuery.get( url, [data], [callback], [type] ) - 语法 $.get( url, [data], [callback], [type] ) 这是此方法使用的…

【数据结构】实验二:顺序表

实验二 顺序表 一、实验目的与要求 1&#xff09;熟悉顺序表的类型定义&#xff1b; 2&#xff09;熟悉顺序表的基本操作&#xff1b; 3&#xff09;灵活应用顺序表解决具体应用问题。 二、实验内容 1&#xff09;在一个整数序列a1,a2,…,an中&#xff0c;若存在一个数&…

【Linux网络】 网络套接字(三)socket编程_TCP网络程序

目录 TCP网络程序服务端创建套接字并绑定服务端监听服务端获取连接服务器处理请求 客户端客户端创建套接字客户端连接服务器客户端发起请求测试 服务器存在的问题多进程版的TCP网络程序多线程版的TCP网络程序线程池版的TCP网络程序 TCP网络程序总结图 TCP网络程序 服务端 创建…

Dubbo

Dubbo 简介Dubbo的快速入门Dubbo的基本架构安装DubboAdmin入门案例Dubbo的最佳实践 Dubbo的高级特性启动检查多版本超时与重试负载均衡SpringCloud整合Dubbo案例 简介 Dubbo是阿里巴巴公司开源的一个高性能、轻量级的Java RPC框架。 致力于提高性能和透明化的RPC远程服务调用方…

Jenkins+Docker+Docker-Compose自动部署,SpringCloud架构公共包一个任务配置

前言 Jenkins和docker的安装&#xff0c;随便百度吧&#xff0c;实际场景中我们很多微服务的架构&#xff0c;都是有公共包&#xff0c;肯定是希望一个任务能够把公共包的配置加进去&#xff0c;一并构建&#xff0c;ok&#xff0c;直接上干货。 Jenkins 全局环境安装 pwd e…

DSA之图(4):图的应用

文章目录 0 图的应用1 生成树1.1 无向图的生成树1.2 最小生成树1.2.1 构造最小生成树1.2.2 Prim算法构造最小生成树1.2.3 Kruskal算法构造最小生成树1.2.4 两种算法的比较 1.3 最短路径1.3.1 两点间最短路径1.3.2 某源点到其他各点最短路径1.3.3 Dijkstra1.3.4 Floyd 1.4 拓扑排…

机器学习:Bert and its family

Bert 先用无监督的语料去训练通用模型&#xff0c;然后再针对小任务进行专项训练学习。 ELMoBertERNIEGroverBert&PALS Outline Pre-train Model 首先介绍预训练模型&#xff0c;预训练模型的作用是将一些token表示成一个vector 比如&#xff1a; Word2vecGlove 但是对于…

微服务契约测试框架-Pact

契约测试 契约测试的思想就是将原本的 Consumer 与 Provider 间同步的集成测试&#xff0c;通过契约进行解耦&#xff0c;变成 Consumer 与 Provider 端两个各自独立的、异步的单元测试。 契约测试的优点&#xff1a; 契约测试与单元测试以及其它测试之间没有重复&#xff0c…

Google Earth Engine谷歌地球引擎提取多波段长期反射率数据后绘制折线图并导出为Excel

本文介绍在谷歌地球引擎GEE中&#xff0c;提取多年遥感影像多个不同波段的反射率数据&#xff0c;在GEE内绘制各波段的长时间序列走势曲线图&#xff0c;并将各波段的反射率数据与其对应的成像日期一起导出为.csv文件的方法。 本文是谷歌地球引擎&#xff08;Google Earth Engi…

图为科技T501赋能工业机器人 革新传统工业流程

工业机器人已成为一个国家制造技术与科技水平的重要衡量标准&#xff0c;在2019年&#xff0c;中国工业机器人的组装量与产量均位居了全球首位。 当前&#xff0c;工业机器人被广泛用于电子、物流、化工等多个领域之中&#xff0c;是一种通过电子科技和机械关节制作出来的智能机…

浏览器端代理proxy 解决跨域

一.环境:使用expresshttp-proxy-middleware 直接上代码 // include dependencies const express require( express);//node内置的path模块导入 const path require("path")const { createProxyMiddleware } require( http-proxy-middleware); // 需要代理后端服…

行为型设计模式之策略模式【设计模式系列】

系列文章目录 C技能系列 Linux通信架构系列 C高性能优化编程系列 深入理解软件架构设计系列 高级C并发线程编程 设计模式系列 期待你的关注哦&#xff01;&#xff01;&#xff01; 现在的一切都是为将来的梦想编织翅膀&#xff0c;让梦想在现实中展翅高飞。 Now everythi…

【万字长文】SpringBoot整合SpringSecurity+JWT+Redis完整教程(提供Gitee源码)

前言&#xff1a;最近在学习SpringSecurity的过程中&#xff0c;参考了很多网上的教程&#xff0c;同时也参考了一些目前主流的开源框架&#xff0c;于是结合自己的思路写了一个SpringBoot整合SpringSecurityJWTRedis完整的项目&#xff0c;从0到1写完感觉还是收获到不少的&…

K8s Service网络详解(二)

K8s Service网络详解&#xff08;二&#xff09; Kube Proxy调度模式Kube-proxy IptablesKube-proxy IPVS Service SelectorPod DNS种常见的 DNS 服务Kube-DNSCoreDNSCorefile 配置 DNS 记录DNS 记录 ServiceDNS 记录 PodDNS 配置策略 Pod 的主机名设置优先级 Ingress Kube Pro…

Appium+python自动化(二十五)-获取控件ID(超详解)

简介 在前边的第二十二篇文章里&#xff0c;已经分享了通过获取控件的坐标点来获取点击事件的所需要的点击位置&#xff0c;那么还有没有其他方法来获取控件点击事件所需要的点击位置呢&#xff1f;答案是&#xff1a;Yes&#xff01;因为在不同的大小屏幕的手机上获取控件的坐…

ModStartCMS v6.9.0 后台多标签改进,主题色自动切换修复

ModStart 是一个基于 Laravel 模块化极速开发框架。模块市场拥有丰富的功能应用&#xff0c;支持后台一键快速安装&#xff0c;让开发者能快的实现业务功能开发。 系统完全开源&#xff0c;基于 Apache 2.0 开源协议&#xff0c;免费且不限制商业使用。 功能特性 丰富的模块市…