基于yolov2深度学习网络的猫脸检测识别matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

load yolov2.mat% 加载训练好的目标检测器
img_size= [224,224];
imgPath = 'test/';        % 图像库路径
imgDir  = dir([imgPath '*.jpg']); % 遍历所有jpg格式文件
cnt     = 0;
for i = 1:36          % 遍历结构体就可以一一处理图片了iif mod(i,12)==1figureendcnt     = cnt+1;subplot(3,4,cnt); img = imread([imgPath imgDir(i).name]); %读取每张图片 I               = imresize(img,img_size(1:2));[bboxes,scores] = detect(detector,I,'Threshold',0.15);if ~isempty(bboxes) % 如果检测到目标I = insertObjectAnnotation(I,'rectangle',bboxes,scores,LineWidth=3);% 在图像上绘制检测结果endsubplot(3,4,cnt); imshow(I, []);  % 显示带有检测结果的图像pause(0.01);% 等待一小段时间,使图像显示更流畅if cnt==12cnt=0;end
end
73

4.算法理论概述

        YOLOv2的论文全名为YOLO9000: Better, Faster, Stronger,它斩获了CVPR 2017 Best Paper Honorable Mention。在这篇文章中,作者首先在YOLOv1的基础上提出了改进的YOLOv2,然后提出了一种检测与分类联合训练方法,使用这种联合训练方法在COCO检测数据集和ImageNet分类数据集上训练出了YOLO9000模型,其可以检测超过9000多类物体。所以,这篇文章其实包含两个模型:YOLOv2和YOLO9000,不过后者是在前者基础上提出的,两者模型主体结构是一致的。YOLOv2相比YOLOv1做了很多方面的改进,这也使得YOLOv2的mAP有显著的提升,并且YOLOv2的速度依然很快,保持着自己作为one-stage方法的优势,YOLOv2和Faster R-CNN, SSD等模型的对比如下图所示。

         基于YOLOv2深度学习网络的猫脸检测识别是一种利用深度卷积神经网络进行目标检测的方法。下面将详细介绍这种方法的原理和数学公式。

        YOLOv2是一种基于深度卷积神经网络的目标检测算法,它将目标检测任务转化为一个回归问题,直接在输出层回归目标的边界框(bounding box)和类别信息。相较于传统的目标检测方法,YOLOv2具有速度快、准确率高、能够处理复杂背景等优点。

        在猫脸检测识别任务中,YOLOv2首先会对输入图像进行特征提取,然后利用这些特征进行猫脸的位置和大小预测。具体来说,YOLOv2将输入图像划分成S×S个网格,每个网格负责预测B个边界框和C个类别概率值。如果一个物体的中心落在某个网格内,则该网格负责预测这个物体的边界框和类别信息。

       每个边界框包含5个参数,分别是边界框的中心坐标(x,y)、宽度w、高度h和置信度confidence。置信度反映了模型对这个边界框是否包含物体的置信程度。

        每个网格还需要预测C个类别概率值,表示该网格内物体属于每个类别的概率。最终,每个边界框的类别置信度可以通过类别概率值和边界框置信度相乘得到。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/107349.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

至强服务器BIOS/UEFI驱动开发笔记

至强服务器BIOS/UEFI驱动开发笔记 驱动开发基础Hello UEFI Driver 项目选择项目位置初始化驱动代码文件结构驱动程序入口和基本功能导入AMI工程AMI平台Hello UEFI Driver 编译问题测试结果打印设备列表继续开发`HelloWorldSupported`函数依赖配置使用脚本编译编译测试此DXE驱动…

SQL如何导入数据以及第一次上机作业

如何导入excel数据 首先得学会导入数据 使用excel格式不需要改成其它格式(如csv,txt),因为你改了到时候还是会报错(实践过使用Sum统计总数一直说我数据格式有问题) 首先右键TSGL数据库->任务->导入数…

C++前缀和算法应用:矩形区域不超过 K 的最大数值和

基础知识点 C算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 题目 给你一个 m x n 的矩阵 matrix 和一个整数 k ,找出并返回矩阵内部矩形区域的不超过 k 的最大数值和。 题目数据保证总会存在一个数值和不超过 k 的矩形区域。 示例 1&#x…

机器学习-概述与贝叶斯算法

机器学习的一般步骤:数据搜集、数据清洗、特征工程、数学建模。数据划分:训练集、验证集、测试集。K折交叉验证:解决数据量不够大问题,解决参数调优问题。深度学习不用做特征工程,传统机器学习要。损失函数&#xff0c…

深圳寄包裹到德国

深圳,作为全球最发达的城市之一,以其高效的物流服务在全球范围内享有盛名。如果你正在寻找一种方式将包裹从深圳寄送到德国,那么本文将为你提供详细的步骤和建议。 第一步:了解国际邮寄的基本信息 首先,你需要了解包裹…

Bitquiz重塑Learn to Earn热潮,用户零投入让学习创造价值

Axie 带来的暴富效应、StepN 带来的出圈效应,近期Bigtime 在熊市中的大火,为加密参与者带来的赚取效应,X to Earn 重新成为整个市场关注的重点,GameFi 再次站在了风口浪尖。 大家开始寻找下一个Bigtime,希望能够抓住一…

低代码技术这么香,如何把它的开发特点发挥到极致?

前言 什么是低代码技术? 低代码是一种可视化软件开发方法,通过最少的编码更快地交付应用程序。图形用户界面和拖放功能使开发过程的各个方面自动化,消除了对传统计算机编程方法的依赖。 文章目录 前言低代码平台怎么选?用友Yonbu…

压缩炸弹,Java怎么防止

一、什么是压缩炸弹,会有什么危害 1.1 什么是压缩炸弹 压缩炸弹(ZIP):一个压缩包只有几十KB,但是解压缩后有几十GB,甚至可以去到几百TB,直接撑爆硬盘,或者是在解压过程中CPU飙到100%造成服务器宕机。虽然…

JOSEF约瑟 多档切换式漏电(剩余)继电器JHOK-ZBL1 30/100/300/500mA

系列型号: JHOK-ZBL多档切换式漏电(剩余)继电器(导轨) JHOK-ZBL1多档切换式漏电(剩余)继电器 JHOK-ZBL2多档切换式漏电(剩余)继电器 JHOK-ZBM多档切换式漏电&#xf…

Unity 3D基础——缓动效果

1.在场景中新建两个 Cube 立方体,在 Scene 视图中将两个 Cude的位置错开。 2.新建 C# 脚本 MoveToTarget.cs(写完记得保存) using System.Collections; using System.Collections.Generic; using UnityEngine;public class MoveToTarget : M…

SystemC入门学习-第8章 测试平台的编写

之前的章节,一直把重点放在用SystemC来描述硬件电路上,即如何编写SystemC 的RTL。本章的注意力集中在验证和编写测试平台上。 重点包括: 如何生成时钟信号和激励波形如何编写有响应能力的测试平台如何记录仿真结果 8.1 编写测试平台 测试平…

论文阅读:Rethinking Range View Representation for LiDAR Segmentation

来源ICCV2023 0、摘要 LiDAR分割对于自动驾驶感知至关重要。最近的趋势有利于基于点或体素的方法,因为它们通常产生比传统的距离视图表示更好的性能。在这项工作中,我们揭示了建立强大的距离视图模型的几个关键因素。我们观察到,“多对一”…

JOSEF约瑟 漏电继电器 JD1-200 工作电压:380V 孔径:45mm 50~500mA

JD1系列漏电继电器 系列型号 JD1-100漏电继电器 JD1-200漏电继电器 JD1-250漏电继电器 JD1系列漏电继电器原为分体式固定式安装,为适应现行安装场合需要,上海约瑟继电器厂在产品原JD1一体式漏电继电器基础上进行产品升级,开发出现在较为…

【Rust基础①】基本类型、所有权与借用、复合类型

文章目录 1 基本类型1.1 数值类型1.1.1 Rust 中的内置的整数类型:1.1.2 浮点类型1.1.3 数学运算1.1.4 位运算1.1.5 序列(Range) 1.2 字符、布尔、单元类型1.3 语句和表达式1.4 函数 2 所有权与借用2.1 栈(Stack)与堆(Heap)2.2 所有权原则2.2.1 转移所有权2.2.2 克隆…

【Redis】Java Spring操作redis

目录 引入Redis依赖StringRedisTemplate使用String使用List使用Set使用hash使用zset 引入Redis依赖 StringRedisTemplate 此处RedisTemplate是把这些操作Redis的方法,分成了几个类别,分门别类的来组织的。 此处提供的一些接口风格,和原生的Re…

IP 协议的相关特性(部分)

IP 协议的报文格式 4位版本号: 用来表示IP协议的版本,现有的IP协议只有两个版本,IPv4,IPv6。 4位首部长度: 设定和TCP的首部长度一样 8位服务类型: (真正只有4位才有效果)&#xf…

Linux C/C++ 嗅探数据包并显示流量统计信息

嗅探数据包并显示流量统计信息是网络分析中的一种重要技术,常用于网络故障诊断、网络安全监控等方面。具体来说,嗅探器是一种可以捕获网络上传输的数据包,并将其展示给分析人员的软件工具。在嗅探器中,使用pcap库是一种常见的方法…

【TensorFlow2 之014】在 TF 2.0 中实现 LeNet-5

一、说明 在这篇文章中,我们将展示如何在 TensorFlow 中实现像 \(LeNet-5\) 这样的基础卷积神经网络。LeNet-5 架构由 Yann LeCun 于 1998 年发明,是第一个卷积神经网络。 数据黑客变种rs 深度学习 机器学习 TensorFlow 2020 年 2 月 29 日 | 0 …

AUTOSAR组织发布20周年纪念册,东软睿驰NeuSAR列入成功案例

近日,AUTOSAR组织在成立20周年之际发布20周年官方纪念册(20th Anniversary Brochure),记录了AUTOSAR组织从成立到今天的故事、汽车行业当前和未来的发展以及AUTOSAR 伙伴关系和合作在重塑汽车方面的作用。东软睿驰提报的基于AUTOS…

行情分析——加密货币市场大盘走势(10.16)

目前大饼再次止稳,并开始向上攀升,目前MACD来看也是进入了多头趋势。重新调整了蓝色上涨趋势线,目前来看这次的低点并没有跌破上一个低点,可以认为是上涨的中继。注意白天的下跌回调。 以太目前也是走了四连阳线,而MAC…