5+非肿瘤分析,分型+WGCNA+机器学习筛选相关基因

今天给同学们分享一篇非肿瘤+分型+机器学习+WGCNA+实验的生信文章“Identification of diagnostic markers related to oxidative stress and inflammatory response in diabetic kidney disease by machine learning algorithms: Evidence from human transcriptomic data and mouse experiments”,这篇文章于2023年3月7日发表在Front Endocrinol (Lausanne)期刊上,影响因子为5.2。
ca68a4128afd3bd534580851fc652ceb.jpeg

糖尿病肾病(DKD)是糖尿病的长期并发症,引起肾脏微血管病变。它也是终末期肾脏疾病(ESRD)的主要原因之一,其病理生理过程复杂。及时预防和治疗对延缓DKD的发展具有重要意义。本研究旨在利用生物信息学分析找到可能成为DKD治疗靶点的关键诊断标志物。


1. 数据处理

 作者从GEO数据库下载了七个数据集,共计214个样本,并使用“sva” R软件包的“ComBat”函数去除来自不同来源的数据的批次效应。PCA图表显示了在去除批次效应之前和之后的数据分布(分别为图1A、B),结果表明批次效应已经得到有效纠正。在合并数据后,可以准确区分DKD和正常样本(图1C)。使用“limma” R软件包进行差异分析, 作者鉴定出共计772个差异表达基因(其中381个上调,391个下调),如火山图所示(图1D)。接下来, 作者对差异基因进行ORA富集分析。从圆形网络图中可以看出,这些基因富集在“炎症反应”、“上皮间质转化”、“凋亡”和“TNFA信号通路通过NFKB”等途径中(图1E)。TreeMap显示,上调基因主要参与免疫激活、T细胞激活和细胞黏附等生物过程,而下调基因主要富集在与代谢调节相关的生物功能中(图1F)。这些发现通过Kyoto Encyclopedia of Genes and Genomes (KEGG)通路富集分析得到了相应的验证(图1G)。

41cff33674ce645f86c086f280c25934.jpeg

图1 糖尿病肾病(DKD)的差异表达基因(DEG)鉴定和富集分析


2. DKD的不同亚组的鉴定

首先, 作者将氧化应激和炎症反应相关基因(OS Infla)与先前获得的差异表达基因(DEGs)进行交叉,并获得了84个差异表达的氧化应激和炎症反应相关基因(DEOIGs)(图2A)。接下来, 作者使用R软件包“ConsensusClusterPlus”根据这84个DEOIGs将DKD患者分为不同的亚组。当一致性矩阵k值为2时,DKD样本之间的交叉最小,符合选择标准(图2B-E)。因此,113个DKD样本被分为两个明显的聚类,即DKD亚型1和2(分别为C1和C2)。热图显示大多数DEOIGs在C1亚型中上调,在C2亚型和正常样本中下调(图2F)。GSEA富集分析表明,C1亚型富集了细胞外基质受体相互作用,而C2亚型富集了代谢途径(图2G)。 作者量化了不同免疫细胞亚群的ssGSEA富集分数,以用于研究DKD亚型与免疫细胞之间的关系。结果表明,C1亚型在更多与免疫相关的细胞中富集,如调节性T细胞、巨噬细胞、活化的B细胞和浆细胞样树突状细胞。然后, 作者通过查阅文献并使用ssGSEA分析量化结果,找到了近年来与DKD密切相关的通路。山地图显示了两个亚型和正常样本的通路ssGSEA得分,揭示了Wnt、Notch和凋亡通路在C1亚型中较高,而过氧化物酶活化受体(PPAR)、过氧化物酶体、哺乳动物雷帕霉素靶蛋白(mTOR)、自噬、AMPK和其他通路在C1亚型中较低(图2H)。

a8cefb49cd382eca543ad6246bbc252b.jpeg

图2 DKD亚型的鉴定


3. 构建WGCNA并识别关键模块

 作者使用了来自七个不同数据集的113个DKD样本,使用中位数绝对偏差对前5000个基因进行了WGCNA分析的筛选。随后, 作者根据尺度自由拟合指数和不同软阈值幂的平均连接度,基于尺度自由R2进行了评估。 作者的研究选择了软阈值幂β = 6和尺度自由R2 = 0.8744133来构建一个标准的尺度自由网络,使用Pick Soft Threshold函数(图3A)。最终, 作者确定了六个模块(图3B)。 作者使用相关热图来探索每个模块与糖尿病肾病的相关性,发现MEblue模块与C1和C2亚型的相关性最高(图3C)。基因重要性评分被用来分析基因与DKD亚型之间的关联,结果显示MEblue模块具有最高的基因重要性评分(图3D)。相关散点图进一步证明了MEblue模块中的基因不仅与MEblue模块强相关,而且与糖尿病肾病亚型显著相关(图3E)。因此, 作者提取了MEblue模块中的基因进行后续分析。

38a4199ccfbe271366761be4a3f6ee32.jpeg

图3 加权基因共表达网络分析(WGCNA)


4. 糖尿病肾病的诊断标志物鉴定

&nbsp;作者通过对糖尿病肾病的两个亚型进行差异分析,获得了473个差异基因(|log2FC| > 1,padj < 0.05)。Venn图显示,在与MEblue模块中的1458个基因相交后,发现了347个相交基因。使用STRING在线网络工具构建了上述347个基因的PPI网络图,并在Cytoscape软件中进行了分析。使用Upset图选择满足CytoHubba插件的12种算法的相交基因,最终获得了279个基因(附图4)。基于这279个基因,&nbsp;作者进一步使用不同的生物信息学方法筛选出诊断标志物。使用LASSO回归算法,挑选出了12个潜在生物标志物(图4A、B)。随机森林(RF)算法确定了15个候选基因(图4C、D)。SVM-RFE算法显示,当特征基因数为64时,准确率最高达到0.956(图4E)。最终,&nbsp;作者获得了四个基因作为DKD的诊断标志物(图4F)。

e22e4e44dbea78ef1e128e64a6f9024d.jpeg

图4 诊断标记物的鉴定


5.&nbsp;四个诊断标志物的诊断价值和验证

箱线图显示了在七个合并的GEO数据集中四个标志基因的表达情况(图5A)。可以看出,DKD样本中四个基因的表达高于正常样本。Nephroseq v5在线数据库中的样本也验证了它们的高表达(图5B),表明它们在DKD的发生和发展过程中可能起到重要作用。在合并的GEO数据集中,当将所有四个基因作为一个变量进行拟合时,ROC曲线下面积(AUC)为0.808,比单独使用它们作为诊断变量时获得了更好的结果(图5C)。&nbsp;作者还评估了这四个基因在来自GSE142025数据集的独立患者队列中的诊断效能。每个基因的ROC曲线下面积(AUC)值都大于0.8,表明这四个基因可以诊断DKD(图5D)。相关分析显示,四个基因的表达与肌酐呈正相关(图5E),与肾小球滤过率呈负相关(图5F)。

300d4626a0490fe565b2cfd784af0544.jpeg

图5 诊断效能和诊断标志物的外部验证


6.&nbsp;基于特征基因的DKD诊断模型的Nomogram构建

基于四个诊断标志物的表达,&nbsp;作者基于逻辑回归构建了一个诊断模型,并绘制了一个图表(图6A)。在这个图表中,参与构建诊断模型的每个基因对应一个分数,它们的分数相加得到一个总分,该总分对应不同的DKD诊断效果。校准曲线显示该图表能可靠地诊断DKD(图6B)。ROC曲线表明该模型的AUC值为0.801(图6C)。DCA结果通过四个单独的基因或它们的组合来评估DKD患者的结果,显示了净效益(NB)。结果表明,组合的图表模型能显著增加净效益(图6D)。

242fbe51baca3379b89a91b00629c41e.jpeg

图6 DKD诊断模型的构建


7.&nbsp;诊断标志物的功能富集分析

为了探索与诊断标志物相关的生物过程,&nbsp;作者分析了这四个诊断标志物与免疫细胞的相关性。结果表明,它们与大多数免疫细胞浸润呈正相关(图7A),如活化的CD4 T细胞、活化的树突状细胞、调节性T细胞、巨噬细胞等。接下来,&nbsp;作者根据基因表达将DKD样本分为高表达组和低表达组。对高表达组和低表达组中的差异表达基因进行GSEA分析,以探索可能涉及的信号通路,结果发现这四个基因的通路富集是一致的。因此,它们在TNFA SIGNALING VIA NFKB、KRAS SIGNALING UP、INTERFERON GAMMA RESPONSE、INFLAMMATORY RESPONSE、EPITHELIAL MESENCHYMAL TRANSITION等方面均显著富集(图7B)。功能富集分析显示,这四个基因的高表达组均富集在ADAPTIVE IMMUNE RESPONSE、T CELL ACTIVATION、IMMUNE RESPONSE REGULATING CELL SURFACE RECEPTOR SIGNALING PATHWAY等方面。低表达组在生物过程中富集了一些如SMALL MOLECULE CATABOLIC PROCESS、FATTY ACID CATABOLIC PROCESS、INNER MITOCHONDRIAL MEMBRANE PROTEIN COMPLEX等的过程(图7C)。

22cb5a92c8056daaae4ebc6905e4bdd3.jpeg

图7 诊断标志物的生物学功能富集


8.&nbsp;动物模型中的验证

为了进一步验证这四个标志物在早期DKD诊断中的诊断价值,&nbsp;作者利用12周龄的db/db小鼠作为自发性DKD模型。&nbsp;作者发现,与正常对照组小鼠相比,DKD组小鼠的体重、血糖、HbA1c、血清肌酐、血尿素氮和尿白蛋白/肌酐水平显著增加(图8A)。病理染色还显示DKD组小鼠的肾组织中有系膜细胞增生、系膜基质扩张以及肾小球和肾小管基底膜不规则增厚(图8B),表明自发性DKD模型已成功建立。接下来,&nbsp;作者检测了四个生物标志物(包括TNC、PXDN、TIMP1和TPM1)的mRNA表达水平。结果显示,TNC、TPM1和PXDN在小鼠模型中显著升高。不幸的是,TIMP1呈上升趋势,两组之间没有差异(图8C)。&nbsp;作者还检测了小鼠血液和尿液中的四个生物标志物中的三种分泌蛋白。结果显示,TNC和PXDN在血液和尿液中持续升高,而TIMP1在尿液中显著升高,但在血液中没有显著差异(图8D)。相关分析显示,无论是血液样本还是尿液样本,这些标志物与尿白蛋白/肌酐比值明显呈正相关。至于血糖和HbAc1,这些标志物与它们之间没有显著相关性。免疫组化结果显示,TNC、TPM1、TIMP1和PXDN的表达水平在DKD小鼠模型中升高(图8E)。为了进一步验证上述变化与DKD而不是糖尿病有关,&nbsp;作者的研究还添加了两组6周龄的db/db小鼠和正常小鼠。&nbsp;作者发现,与正常对照小鼠相比,DM小鼠的体重、血糖和HbA1c显著增加,但两组小鼠的血清肌酐、血尿素氮和尿白蛋白/肌酐水平之间没有差异。同时,在肾脏病理染色中没有发现显著差异。qRT-PCR的结果显示,TPM1和TIMP1的mRNA表达水平在两组之间没有统计学差异。TNC和PXDN的表达在DM组中增加。此外,检测了DM组小鼠的血液和尿液样本中三种分泌蛋白的表达水平,并发现只有血液样本中的TNC在DM小鼠中显著增加。对于尿液样本,DM小鼠中的TNC和TIMP1的升高存在显著差异。

bee9a632782d6b438298fe01402d208e.jpeg

图8 动物实验中诊断标志物的验证


总结

总之,&nbsp;作者通过全面系统的生物信息学分析和实验验证,确定了TNC、PXDN、TIMP1和TPM1作为DKD的潜在诊断标志物,并建立了一个包含这四个诊断标志物的图表,并初步探讨了它们在DKD的发生和发展中可能的生物学功能。这些发现将为DKD的早期诊断和治疗提供新的思路。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/106817.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用Flask构建一个AI翻译服务

缘起 首先&#xff0c;看一段代码&#xff0c;只有几行Python语句却完成了AI翻译的功能。 #!/usr/bin/python3import sys from transformers import MarianMTModel, MarianTokenizerdef translate(word_list):model_name "Helsinki-NLP/opus-mt-en-zh"tokenizer …

Windows网络系统架构

在介绍Windows网络体系架构之前&#xff0c;我首先介绍一下Windows中的两个重要编程规范——TDI&#xff0c;NDIS.&#xff0c;然后再介绍网络体系的架构。TDI&#xff0c;Transport Driver Interface&#xff0c;传输驱动程序接口。/Windows/System32/Drivers/Tdi.sys。在实现…

root赋权

报错&#xff1a; GRANT ALL PRIVILEGES ON test.* TO ‘root’‘%’ WITH GRANT OPTION 解决方案 赋权 GRANT ALL PRIVILEGES ON *.* TO rootlocalhost WITH GRANT OPTION; FLUSH PRIVILEGES;2.创建用户&#xff0c;再赋权 CREATE USER root% IDENTIFIED BY password; GR…

数据迁移库工具-C版-01-HappySunshineV1.0-(支持Gbase8a)

一、测试环境信息 名称值CPUIntel(R) Core(TM) i5-1035G1 CPU 1.00GHz操作系统CentOS Linux release 7.9.2009 (Core)内存3G逻辑核数2Gbase8a版本8.6.2-R43.34.27468a27HappySunshine版本V1.0 二、支持功能 序号功能1GBASE8a到GBASE8a的库级数据迁移。2批量加载。&#xff…

搜索引擎站群霸屏排名源码系统+关键词排名 前后端完整的搭建教程

开发搜索引擎站群霸屏排名系统是一项重要的策略&#xff0c;通过在搜索引擎中获得多个高排名站点&#xff0c;可以大大提高企业的品牌知名度&#xff0c;从而吸引更多的潜在客户和消费者。而且当潜在客户在搜索结果中看到多个与您的品牌相关的站点时&#xff0c;他们可能会认为…

Thread常用API

setname方法每个线程取名 需要创建构造器 线程设置名字 package Thread_api_test;// 继承Thread类 public class MyThread extends Thread {//创建构造器 线程设置名字public MyThread(String name){super(name);}Overridepublic void run() {super.run();Thread mThread.cur…

css 左右滚轮无缝衔接

最近的项目有做到一个功能 类似跑马灯或者公告栏那种 有文字 也有列表的 所以 写了两种 第一种公告栏文字是用的js 第二种图文类型是用的css 两种方法 记录一下 第一种 纯文字滚动 其实也是根据js去计算dom的宽度 通过js去给css赋值 <div class"div1"><div …

计网面试复习自用

五层&#xff1a; 应用层&#xff1a;应用层是最高层&#xff0c;负责为用户提供网络服务和应用程序。在应用层&#xff0c;用户应用程序与网络进行交互&#xff0c;发送和接收数据。典型的应用层协议包括HTTP&#xff08;用于网页浏览&#xff09;、SMTP&#xff08;用于电子邮…

【MySQL】事务四大特性ACID、并发事务问题、事务隔离级别

&#x1f40c;个人主页&#xff1a; &#x1f40c; 叶落闲庭 &#x1f4a8;我的专栏&#xff1a;&#x1f4a8; c语言 数据结构 javaEE 操作系统 Redis 石可破也&#xff0c;而不可夺坚&#xff1b;丹可磨也&#xff0c;而不可夺赤。 MySQL 一、事务四大特性ACID1.1 原子性1.2 …

nodejs使用nginx负载均衡策略有哪些?

负载均衡是一种优化资源使用、最大化吞吐量、最小化响应时间、并避免任何单个资源过载的技术。负载均衡通常由专用的软件或硬件&#xff08;如负载均衡器&#xff09;来实现。在本文中&#xff0c;我们将主要讨论软件负载均衡&#xff0c;尤其是使用Nginx。 负载均衡策略 以下…

车辆车型识别系统python+TensorFlow+Django网页界面+算法模型

一、介绍 车辆车型识别系统。本系统使用Python作为主要开发编程语言&#xff0c;通过TensorFlow搭建算法模型网络对收集到的多种车辆车型图片数据集进行训练&#xff0c;最后得到一个识别精度较高的模型文件。并基于该模型搭建Django框架的WEB网页端可视化操作界面。实现用户上…

SQL语句常见分类

SQL是Structured Query Language&#xff08;结构化查询语言&#xff09;的简写。 Structured发音 SQL 是关系型数据库管理系统的标准语言&#xff0c;如Oracle、MySQL、Microsoft SQL Server。 DDL DDL是Data Definition Language&#xff08;数据定义语言&#xff09;的简…

【LeetCode刷题(数据结构与算法)】:二叉树之左叶子之和

给定二叉树的根节点 root &#xff0c;返回所有左叶子之和 输入: root [3,9,20,null,null,15,7] 输出: 24 解释: 在这个二叉树中&#xff0c;有两个左叶子&#xff0c;分别是 9 和 15&#xff0c;所以返回 24 示例 2: 输入: root [1] 输出: 0 这都题目用递归的方法就可以解决…

『C++之STL』双端队列 - deque

前言 双端队列,Double-ended queue,简称为deque是一种线性结构的一种容器; 在数据结构中出现的顺序表与链表,或者栈与队列都算是线性结构; 在结构中,它与vector相比较会相似一些; 但是在实际当中,双端队列 - deque 包含了vector与list的优点; vector(顺序表) 支持随机访问,空…

1.12.C++项目:仿muduo库实现并发服务器之LoopThreadPool模块的设计

文章目录 一、LoopThreadPool模块二、实现思想&#xff08;一&#xff09;功能&#xff08;二&#xff09;意义&#xff08;三&#xff09;功能设计 三、代码 一、LoopThreadPool模块 1.线程数量可配置&#xff08;0或多个&#xff09; 2. 对所有的线程进行管理&#xff0c;其…

Vue3引入腾讯地图,点击坐标后实时获取经纬度

本文将介绍如何在Vue 引入腾讯地图组件&#xff0c;引入后可以直接在页面中渲染腾讯地图&#xff0c;实现 经纬度 与 地图锚点位置的双向绑定&#xff0c;如&#xff1a; 1&#xff0c;输入经纬度后&#xff0c;地图自动定位到指定位置&#xff1b;2&#xff0c;鼠标在地图点击…

MySQL InnoDB存储引擎的缓冲池和内存性能

MySQL数据库的InnoDB存储引擎详细记录了其缓冲池(Buffer Pool)和内存(Memory)的统计信息&#xff0c;这些信息在分析数据库性能和进行优化时非常重要。这些信息可以通过语句以下查询获取。 SHOW ENGINE INNODB STATUS; 本文将对这些统计信息进行介绍&#xff0c;并给出优化建…

多域名SSL数字证书是什么呢

多域名SSL数字证书是众多SSL数字证书中最灵活的一款SSL证书产品。一般一张SSL证书只能保护一个域名&#xff0c;即使能保护多个域名站点&#xff0c;证书保护的域名类型也有限制(通配符SSL数字证书)。多域名SSL数字证书既能用一张SSL证书保护多个域名网站&#xff0c;又不限制域…

pg ash自制版 pg_active_session_history

一、 实现功能 由于pgsentinel插件存在严重的内存占用问题&#xff0c;本篇改为自行实现&#xff0c;但其语句仍可以参考pgsentinel插件。PostgreSQL ash —— pgsentinel插件 学习与踩坑记录_CSDN博客 v1.0 根据pg 14版本设计及测试&#xff0c;仅支持收集主库信息。默认每10秒…

HarmonyOS/OpenHarmony原生应用-ArkTS万能卡片组件Toggle

组件提供勾选框样式、状态按钮样式及开关样式。该组件从API Version 8开始支持。 仅当ToggleType为Button时可包含子组件。 一、接口 Toggle(options: { type: ToggleType, isOn?: boolean }) 从API version 9开始&#xff0c;该接口支持在ArkTS卡片中使用。 参数: Toggle…