数据结构(一)—— 数据结构简介

文章目录

    • 一、基本概念和术语?
      • 1.1、数据
      • 1.2、数据元素
      • 1.3、数据项(属性、字段)
      • 1.4、数据对象
      • 1.5、数据结构
    • 二、逻辑结构和物理结构(存储结构)
      • 2.1、逻辑结构
        • 1、定义
        • 2、分类(线性结构和非线性结构)
      • 2、物理结构
        • 1)定义
        • 2)顺序存储和链式存储
        • 3)其他存储方式
    • 三、算法和抽象数据类型简介
      • 3.1 抽象数据类型定义
      • 3.2 算法定义
      • 1、算法的特性
      • 2、算法效率的度量
        • 2.1 事后统计法
        • 2.2 事前分析统计
      • 3、算法的复杂度
      • 4、算法实例

一、基本概念和术语?

1.1、数据

数据是描述客观事物的符号,是计算机可以操作的对象,是能被计算机识别,并输入到计算机处理的符号集合。

(数据不仅仅包括整型、实型等数值型,还有字符、声音、图像、视频等非数值类型)

1.2、数据元素

数据元素是组成数据的、有一定意义的基本单位,在计算机中通常作为整体处理,也称为记录(元组、结点、顶点)。

1.3、数据项(属性、字段)

  • 一个数据元素可以由若干个数据项组成。
  • 数据项是数据不可分割的最小单位。

1.4、数据对象

数据对象是性质相同的数据元素的集合,是数据的子集。

1.5、数据结构

  • 在现实世界中,不同数据元素之间不是独立的,而是存在特定的关系,这些关系称为结构。
  • 数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
  • 数据结构包括三方面的内容:逻辑结构、存储结构和数据的运算。数据的逻辑结构和存储结构是密不可分的两个方面,一个算法的设计取决于所选定的逻辑结构,而算法的实现依赖于所采用的存储结构。

二、逻辑结构和物理结构(存储结构)

数据结构是相互间存在特定关系的数据的集合,分为逻辑结构和物理结构。

2.1、逻辑结构

1、定义

逻辑结构是指数据对象中数据元素之间相互关系(逻辑关系),即从逻辑关系上描述数据。它与数据的存储无关,是独立于计算机存储器的。

2、分类(线性结构和非线性结构)

根据数据元素之间关系的不同特征,通常有下列4类基本结构,复杂程度依次递进。

1image.png

  • 集合:结构中的数据元素之间除了同属于一个集合外,没有其他的关系。

  • 线性结构:线性结构中的数据元素之间是一对一的关系。

  • 树形结构:树形结构中的数据元素之间是一对多的关系。

  • 图状结构或网状结构:结构中的元素之间是多对多的关系。

2、物理结构

image.png

1)定义

数据的物理结构是指数据的逻辑结构在计算机中的存储方式。又称存储结构。

它研究的是数据结构在计算机中的实现方法,包括数据元素的表示和元素之间的关系。

数据元素的存储结构形式主要有两种:顺序存储和链式存储

2)顺序存储和链式存储

1. 顺序存储结构

  • 是利用数据元素在存储器中的相对位置来表示数据元素之间的逻辑顺序。
  • 顺序存储结构是把数据元素放在地址连续的存储单元中,程序设计中使用数组类型来实现。(逻辑相邻物理相邻)

2. 链式存储结构

  • 利用结点中指针来表示数据元素之间的关系。
  • 把数据元素存储在任意的存储单元里,这组存储单元可以是连续的,也可以是连续的,程序设计中使用指针类型来实现。(逻辑相邻物理不一定相邻)
3)其他存储方式
  • 索引存储:类似于目录,以后可以联系操作系统的文件系统章节来理解。

  • 散列存储:通过关键字直接计算出元素的物理地址。

三、算法和抽象数据类型简介

3.1 抽象数据类型定义

  1. 数据类型:是指一组性质相同的值的集合及定义在此集合上的一些操作的总称。

例如:C语言中数据类型分为基本类型和构造类型

基本类型:整型、浮点型、字符型等

构造类型:数组、结构、联合、指针、枚举型、自定义类型等

  1. 抽象数据类型(abstract data type,ADT):是指一个数学模型及定义在该模型上的一组操作。

3.2 算法定义

算法是特定问题求解步骤的描述,是独立存在的一种解决问题的方法和思想。

1、算法的特性

  • 输入:有0个或多个输入
  • 输出:至少有1个或多个输出
  • 有穷性:算法在有限的步骤后应该自动结束而不会无限循环。
  • 确定性:算法中的每个步骤都有确定的含义,不会出现二义性
  • 可行性:算法的每一步都是可行的
  • 正确性:算法对于合法数据能够得到满足要求的结果,能够处理非法输入,并得到合理的结果。
  • 可读性:算法要便于阅读、理解和交流
  • 健壮性:算法不应该得到莫名其妙的结果
  • 性价比:利用最少的资源得到满足要求的结果

2、算法效率的度量

效率评估是工程中算法最重要的附加特性。

2.1 事后统计法

比较不同算法对同一组输入数据的运行处理时间。

缺点:

A、为了获得不同算法的运行处理时间必须编写相应程序

B、运行处理时间严重依赖硬件以及运行时环境

C、算法的测试数据选取困难

2.2 事前分析统计

依据统计的方法对算法效率进行评估

影响算法效率的主要因素:

A、算法采用的策略和方法

B、问题的输入规模

C、编译器产生的代码

D、计算机的执行速度

算法效率的简单估算:

image.png

image.png

image.png

三种求和算法的关键部分的操作数量分别为2n,n,1。随着问题规模的增大,操作数量的差异会越来越大,效率差异也会越来越大。

image.png

不同算法操作数量的对比

算法操作数量对比的实例一:

image.png

n<=3时,算法B优于算法A。随着n的规模增大,算法A优势比较明显。

算法操作数量对比的实例二:

image.png

n=1时,算法C与算法D效率相同。随着n规模的增大,算法C优势明显优于算法D。

判断算法的效率时,操作数量中的常数项和其他次阶项常常可以忽略,只需要关注最高阶项。

3、算法的复杂度

(1)算法的时间复杂度

算法时间复杂度是算法运行后对时间需求量的定性描述。

由于主要关注算法的效率问题,因此主要讨论算法的时间复杂度。

O表示法

算法的效率严重依赖于操作(Operations)数量,操作数量的估算可以作为时间复杂度的估算,在判断时首先关注操作数量的最高阶项。

O(2)==>O(1)

O(3n+3)> O(3n)>O(n)

O(3n2+n+4)==>O(n2)

常见的时间复杂度:
image.png

image.png

image.png

image.png

(2)算法的空间复杂度

算法空间复杂度是算法运行后对空间需求量的定性描述。

通常使用S(n)表示算法的空间复杂度。使用时间复杂度的推导方法推导空间复杂度。

当算法所需的内存空间大小为常数时,算法的空间复杂度为S(1)。

通常情况下,算法的时间复杂度更受关注。可以通过增加额外空间降低时间复杂度。

算法是解决具体问题的步骤,数据结构是算法解决问题的载体。

4、算法实例

一个数组中存储着1——1000的数字,每个数字可能出现多次或者不出现,找出出现次数最多的数字。
void search(int array[], int len)
{//总计可能出现1000种可能值int sp[1000] = {0};int max = 0;for(int i = 0; i < len; i++){//遍历数组,数组中某个数组出现一次增加统计1次sp[array[i] - 1]++;}for(int i = 0; i < 1000; i++){if(max < sp[i]){max = sp[i];}}for(int i = 0; i< 1000; i++){if(max == sp[i]){cout << "Number:" << i + 1 << endl;cout << "Count:" << max << endl;}}
}

使用空间换时间,算法的时间效率为O(n)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/106303.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Netty 入门 — 亘古不变的Hello World

这篇文章我们正式开始学习 Netty&#xff0c;在入门之前我们还是需要了解什么是 Netty。 什么是 Netty 为什么很多人都推崇 Java boy 去研究 Netty&#xff1f;Netty 这么高大上&#xff0c;它到底是何方神圣&#xff1f; 用官方的话说&#xff1a;Netty 是一款异步的、基于事…

vue绑定style和class 对象写法

适用于&#xff1a;要绑定多个样式&#xff0c;个数确定&#xff0c;名字也确定&#xff0c;但不确定用不用。 绑定 class 样式【对象写法】&#xff1a; .box{width: 100px;height: 100px; } .aqua{background-color: aqua; } .border{border: 20px solid red; } .radius{bor…

【动态库】Ubuntu 添加动态库的搜索路径

在运行程序时&#xff0c;经常遇到下面这种动态库加载失败的情况&#xff0c;这时往往是系统在动态库的搜索路径下没有找到对应的库文件导致的。 目录 一、使用 LD_LIBRARY_PATH 二、修改 /etc/ld.so.conf 一、使用 LD_LIBRARY_PATH 环境变量 LD_LIBRARY_PATH是动态库的搜索…

Jenkins集成newman

一、Docker环境准备 二、Jenkins环境准备 三、登录Jenkins 安装NodeJs插件 四、Jenkins全局工具配置Nodejs 五、创建Jenkins自由风格项目 构建步骤1&#xff1a;选择Execute NodeJS script构建步骤2&#xff1a;选择执行shell脚本 六、将postman相关的脚本、环境变量数据、全局…

Java反射调用jar包

反射作为托管语言的特性&#xff0c;很多框架都依赖反射来实现容器和面向接口编程&#xff0c;对架构程序很重要&#xff0c;首先试验Java的反射部分。 首先创建一个ZLZJar的工程&#xff0c;让他打包成jar包&#xff0c;代码如下 public class Test {//加两个整数public int…

ELK 日志分析系统介绍与部署

目录 一、ELK 简介: 1.开源工具介绍&#xff1a; 2.其它组件&#xff1a; 2.1 Filebeat&#xff1a; 2.2 Fluentd&#xff1a; 2.3 缓存/消息队列&#xff08;redis、kafka、RabbitMQ等&#xff09;&#xff1a; 3. filebeat 结合 logstash 带来好处&#xff1a; 二、为什么要…

[0xGameCTF 2023] web题解

文章目录 [Week 1]signinbaby_phphello_httprepo_leakping [Week 2]ez_sqli方法一&#xff08;十六进制绕过&#xff09;方法二&#xff08;字符串拼接&#xff09; ez_upload [Week 1] signin 打开题目&#xff0c;查看下js代码 在main.js里找到flag baby_php <?php /…

云安全——云计算基础

0x00 前言 学习云安全&#xff0c;那么必然要对云计算相关的内容进行学习和了解&#xff0c;所以云安全会分为两个部分来进行&#xff0c;首先是云计算先关的内容。 0x01 云计算 广泛传播 云计算最早大范围传播是2006年&#xff0c;8月&#xff0c;在圣何塞【1】举办的SES&a…

【Vue面试题二十八】、vue要做权限管理该怎么做?如果控制到按钮级别的权限怎么做?

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a;vue要做权限管理该怎么做…

【Java 进阶篇】JavaScript电灯开关案例:从原理到实现

JavaScript是一门强大的编程语言&#xff0c;它可以用来创建各种交互式网页应用。在这篇博客中&#xff0c;我们将通过一个简单的电灯开关案例来深入了解JavaScript的基础概念&#xff0c;包括HTML、CSS和JavaScript的结合使用。我们将从头开始构建这个案例&#xff0c;逐步引入…

PYTHON进阶-面向对象编程

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…

windows计划任务的配置文件

界面操作 创建计划 依次设置 命令行操作 SCHTASKS 命令简介 SCHTASKS 命令是由微软公司开发并内置于 Windows 系统中的一个命令行工具。该命令可用于设置、修改、查询和删除计划任务&#xff0c;或启动计划任务中所定义的程序或脚本。 SCHTASKS 命令的基本语法 SCHTASKS 命…

多输入多输出 | MATLAB实现CNN-BiLSTM-Attention卷积神经网络-双向长短期记忆网络结合SE注意力机制的多输入多输出预测

MATLAB实现CNN-BiLSTM-Attention卷积神经网络-双向长短期记忆网络结合SE注意力机制的多输入多输出预测 目录 MATLAB实现CNN-BiLSTM-Attention卷积神经网络-双向长短期记忆网络结合SE注意力机制的多输入多输出预测预测效果基本介绍程序设计往期精彩参考资料 预测效果 基本介绍 C…

SpringBoot面试题1:什么是SpringBoot?为什么要用SpringBoot?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:什么是SpringBoot? Spring Boot 是一个用于快速开发独立的、基于 Spring 框架的应用程序的开源框架。它简化了 Spring 应用的配置和部署过程,使…

基于秃鹰优化的BP神经网络(分类应用) - 附代码

基于秃鹰优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于秃鹰优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.秃鹰优化BP神经网络3.1 BP神经网络参数设置3.2 秃鹰算法应用 4.测试结果&#xff1a;5.M…

智慧公厕高精尖技术揭秘,让卫生管理更智能、更舒适

随着科技的飞速发展&#xff0c;智慧公厕正逐渐走进人们的生活。借助物联网、互联网、云计算、大数据、人工智能、自动化控制等技术的应用&#xff0c;智慧公厕将卫生管理提升到一个全新的水平&#xff0c;为公众打造了清洁舒适的使用环境。本文以智慧公厕源头厂家广州中期科技…

【Vue面试题二十九】、Vue项目中你是如何解决跨域的呢?

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a;Vue项目中你是如何解决跨…

C# OpenVINO 通用OCR识别 文字识别 中文识别 服务

软件说明 基于以下开源项目&#xff0c;做了再次封装 https://github.com/sdcb/OpenVINO.NET 自带模型&#xff0c;可离线部署&#xff1b; 技术路线&#xff1a;VS2022Sdcb.OpenVINOSdcb.OpenVINO.PaddleOCROpenCvSharpNLogNancy.Hosting.Self 软件界面 开启服务 测试 耗时…

二、K8S之Pods

Pod 一、概念 K8S作为一个容器编排管理工具&#xff0c;它可以自动化容器部署、容器扩展、容器负载均衡等任务&#xff0c;并提供容器的自愈能力等功能。在Kubernetes中&#xff0c;Pod是最基本的调度单元&#xff0c;它是一组共享存储和网络资源的容器集合&#xff0c;通常是…

计算机毕业设计-开题报告答辩常见问题!Javaweb项目答辩

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…