ELK 日志分析系统介绍与部署

目录

一、ELK 简介:

 1.开源工具介绍:

 2.其它组件:

  2.1 Filebeat:

 2.2 Fluentd:

 2.3 缓存/消息队列(redis、kafka、RabbitMQ等):

 3. filebeat 结合 logstash 带来好处:

二、为什么要使用 ELK:

三、完整日志系统基本特征:

四、ELK 的工作原理:

五、ELK 日志分析系统部署:

 1. 环境准备:

  视图:

 2. Elasticsearch 集群部署:

  2.1 设置Java环境:

  2.2 部署 Elasticsearch 软件:

  2.3 性能参数调优:

  2.4 优化elasticsearch用户拥有的内存权限:

当机器内存大于64G时,遵循原则:建议分配给ES分配 4~32G 的内存即可,其它内存留给操作系统,供lucene使用

  2.5 启动elasticsearch:

 3. 安装 Elasticsearch-head 插件:

  3.1 编译安装 node:

  3.2 安装 phantomjs:

  3.3 安装 Elasticsearch-head 数据可视化工具:

  3.4 修改 Elasticsearch 主配置文件:

  3.5 启动 elasticsearch-head 服务:

 4. Apache 节点 ELK Logstash 部署:

  4.2 安装Java环境:

  4.3 安装logstash:

  4.4 测试 Logstash:

 5. Node1 ELK Kiabana 部署:

  5.1 安装 Kiabana:

  5.2 设置 Kibana 的主配置文件:

  5.3 创建日志文件,启动 Kibana 服务:

  5.4 验证kibana, 添加Elasticsearch 索引:


一、ELK 简介:

ELK平台是一套完整的日志集中处理解决方案,将 ElasticSearch、Logstash 和 Kiabana 三个开源工具配合使用, 完成更强大的用户对日志的查询、排序、统计需求。

 1.开源工具介绍:

ElasticSearch:是基于Lucene(一个全文检索引擎的架构)开发的分布式存储检索引擎,用来存储各类日志。
Elasticsearch 是用 Java 开发的,可通过 RESTful Web 接口,让用户可以通过浏览器与 Elasticsearch 通信。
Elasticsearch是一个实时的、分布式的可扩展的搜索引擎,允许进行全文、结构化搜索,它通常用于索引和搜索大容量的日志数据,也可用于搜索许多不同类型的文档。

Kiabana:Kibana 通常与 Elasticsearch 一起部署,Kibana 是 Elasticsearch 的一个功能强大的数据可视化 Dashboard,Kibana 提供图形化的 web 界面来浏览 Elasticsearch 日志数据,可以用来汇总、分析和搜索重要数据。

Logstash:作为数据收集引擎。它支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储到用户指定的位置,一般会发送给 Elasticsearch。
Logstash 由 Ruby 语言编写,运行在 Java 虚拟机(JVM)上,是一款强大的数据处理工具, 可以实现数据传输、格式处理、格式化输出。Logstash 具有强大的插件功能,常用于日志处理。

 2.其它组件:

  2.1 Filebeat:

  轻量级的开源日志文件数据搜集器。通常在需要采集数据的客户端安装 Filebeat,并指定目录与日志格式,Filebeat 就能快速收集数据,并发送给 logstash 进行解析,或是直接发给 Elasticsearch 存储,性能上相比运行于 JVM 上的 logstash 优势明显,是对它的替代。常应用于 EFLK 架构当中。

 2.2 Fluentd:

  是一个流行的开源数据收集器。由于 logstash 太重量级的缺点,Logstash 性能低、资源消耗比较多等问题,随后就有 Fluentd 的出现。相比较 logstash,Fluentd 更易用、资源消耗更少、性能更高,在数据处理上更高效可靠,受到企业欢迎,成为 logstash 的一种替代方案,常应用于 EFK 架构当中。在 Kubernetes 集群中也常使用 EFK 作为日志数据收集的方案。
在 Kubernetes 集群中一般是通过 DaemonSet 来运行 Fluentd,以便它在每个 Kubernetes 工作节点上都可以运行一个 Pod。 它通过获取容器日志文件、过滤和转换日志数据,然后将数据传递到 Elasticsearch 集群,在该集群中对其进行索引和存储。

 2.3 缓存/消息队列(redis、kafka、RabbitMQ等):

  可以对高并发日志数据进行流量削峰和缓冲,这样的缓冲可以一定程度的保护数据不丢失,还可以对整个架构进行应用解耦。

 3. filebeat 结合 logstash 带来好处:

  1. 通过 Logstash 具有基于磁盘的自适应缓冲系统,该系统将吸收传入的吞吐量,从而减轻 Elasticsearch 持续写入数据的压力
  2. 从其他数据源(例如数据库,S3对象存储或消息传递队列)中提取
  3. 将数据发送到多个目的地,例如S3,HDFS(Hadoop分布式文件系统)或写入文件
  4. 使用条件数据流逻辑组成更复杂的处理er

二、为什么要使用 ELK:

日志主要包括系统日志、应用程序日志和安全日志。系统运维和开发人员可以通过日志了解服务器软硬件信息、检查配置过程中的错误及错误发生的原因。经常分析日志可以了解服务器的负荷,性能安全性,从而及时采取措施纠正错误。
往往单台机器的日志我们使用grep、awk等工具就能基本实现简单分析,但是当日志被分散的储存不同的设备上。如果你管理数十上百台服务器,你还在使用依次登录每台机器的传统方法查阅日志。这样是不是感觉很繁琐和效率低下。当务之急我们使用集中化的日志管理,例如:开源的syslog,将所有服务器上的日志收集汇总。集中化管理日志后,日志的统计和检索又成为一件比较麻烦的事情,一般我们使用 grep、awk和wc等Linux命令能实现检索和统计,但是对于要求更高的查询、排序和统计等要求和庞大的机器数量依然使用这样的方法难免有点力不从心。
一般大型系统是一个分布式部署的架构,不同的服务模块部署在不同的服务器上,问题出现时,大部分情况需要根据问题暴露的关键信息,定位到具体的服务器和服务模块,构建一套集中式日志系统,可以提高定位问题的效率。

三、完整日志系统基本特征:

  • 收集:能够采集多种来源的日志数据
  • 传输:能够稳定的把日志数据解析过滤并传输到存储系统
  • 存储:存储日志数据
  • 分析:支持 UI 分析
  • 警告:能够提供错误报告,监控机制
     

四、ELK 的工作原理:

(1)在所有需要收集日志的服务器上部署Logstash;或者先将日志进行集中化管理在日志服务器上,在日志服务器上部署 Logstash。
(2)Logstash 收集日志,将日志格式化并输出到 Elasticsearch 群集中。
(3)Elasticsearch 对格式化后的数据进行索引和存储。
(4)Kibana 从 ES 群集中查询数据生成图表,并进行前端数据的展示。

总结:logstash作为日志搜集器,从数据源采集数据,并对数据进行过滤,格式化处理,然后交由Elasticsearch存储,kibana对日志进行可视化处理。

五、ELK 日志分析系统部署:

 1. 环境准备:

node1节点(2C/4G):node1/192.168.88.101                    Elasticsearch
node2节点(2C/4G):node2/192.168.80.103                    Elasticsearch
Apache节点:apache/192.168.88.100                        Logstash  Kibana  Apache

  视图:
 

systemctl stop firewalld
setenforce 0##更改主机名
hostnamectl set-hostname apache
su ##切换用户hostnamectl set-hostname node01
suhostnamectl set-hostname node02
su##编写hosts文件:
vim /etc/hosts
192.168.88.101 node01
192.168.88.103 node02
192.168.88.100 apache     ##所有节点配置

 2. Elasticsearch 集群部署:

  2.1 设置Java环境:

java -version					#如果没有安装,yum -y install java
openjdk version "1.8.0_131"
OpenJDK Runtime Environment (build 1.8.0_131-b12)
OpenJDK 64-Bit Server VM (build 25.131-b12, mixed mode)

  2.2 部署 Elasticsearch 软件:

#上传elasticsearch-6.7.2.rpm到/opt目录下
cd /opt
rpm -ivh elasticsearch-6.7.2.rpm(2)修改elasticsearch主配置文件
cp /etc/elasticsearch/elasticsearch.yml /etc/elasticsearch/elasticsearch.yml.bakvim /etc/elasticsearch/elasticsearch.yml   --行数都是大概--17--取消注释,指定集群名字
cluster.name: my-elk-cluster
--23--取消注释,指定节点名字:Node1节点为node1,Node2节点为node2
node.name: node1
node.master: true		#是否master节点,false为否
node.data: true			#是否数据节点,false为否
--36--取消注释,指定数据存放路径
path.data: /var/lib/elasticsearch
--40--取消注释,指定日志存放路径
path.logs: /var/log/elasticsearch
--46--取消注释,避免es使用swap交换分区
bootstrap.memory_lock: true
--55--取消注释,设置监听地址,0.0.0.0代表所有地址
network.host: 0.0.0.0
--59--取消注释,ES 服务的默认监听端口为9200
http.port: 9200					#指定es集群提供外部访问的接口
transport.tcp.port: 9300		#指定es集群内部通信接口
--68--取消注释,集群发现通过单播实现,指定要发现的节点
discovery.zen.ping.unicast.hosts: ["192.168.80.10:9300", "192.168.80.11:9300"]grep -v "^#" /etc/elasticsearch/elasticsearch.yml

  2.3 性能参数调优:

#优化最大内存大小和最大文件描述符的数量
vim /etc/security/limits.conf
......
*  soft    nofile          65536
*  hard    nofile          65536
*  soft    nproc           32000
*  hard    nproc           32000
*  soft    memlock         unlimited
*  hard    memlock         unlimitedvim /etc/systemd/system.conf
DefaultLimitNOFILE=65536
DefaultLimitNPROC=32000
DefaultLimitMEMLOCK=infinity需重启生效

  2.4 优化elasticsearch用户拥有的内存权限:

    由于ES构建基于lucene, 而lucene设计强大之处在于lucene能够很好的利用操作系统内存来缓存索引数据,以提供快速的查询性能。lucene的索引文件segements是存储在单文件中的,并且不可变,对于OS来说,能够很友好地将索引文件保持在cache中,以便快速访问;因此,我们很有必要将一半的物理内存留给lucene ; 另一半的物理内存留给ES(JVM heap )。所以, 在ES内存设置方面,可以遵循以下原则:

  1. 当机器内存小于64G时,遵循通用的原则,50%给ES,50%留给操作系统,供lucene使用
  2. 当机器内存大于64G时,遵循原则:建议分配给ES分配 4~32G 的内存即可,其它内存留给操作系统,供lucene使用

vim /etc/sysctl.conf
#一个进程可以拥有的最大内存映射区域数,参考数据(分配 2g/262144,4g/4194304,8g/8388608)
vm.max_map_count=262144sysctl -p

  2.5 启动elasticsearch:

systemctl start elasticsearch.service
systemctl enable elasticsearch.servicenetstat -antp | grep 9200
#查看elasticsearch是否成功开启


 

  浏览器访问  

http://192.168.88.101:9200  、 http://192.168.88.103:9200 查看节点 Node1、Node2 的信息。

  浏览器访问

http://192.168.88.101:9200/_cluster/health?pretty、http://192.168.80.11:9200/_cluster/health?pretty

查看群集的健康情况,可以看到 status 值为 green(绿色), 表示节点健康运行。

#使用上述方式查看群集的状态对用户并不友好,可以通过安装 Elasticsearch-head 插件,可以更方便地管理群集。

 3. 安装 Elasticsearch-head 插件:

Elasticsearch 在 5.0 版本后,Elasticsearch-head 插件需要作为独立服务进行安装,需要使用npm工具(NodeJS的包管理工具)安装。
安装 Elasticsearch-head 需要提前安装好依赖软件 node 和 phantomjs。

  • node:是一个基于 Chrome V8 引擎的 JavaScript 运行环境。
  • phantomjs:是一个基于 webkit 的JavaScriptAPI,可以理解为一个隐形的浏览器,任何基于 webkit 浏览器做的事情,它都可以做到。

  3.1 编译安装 node:

#上传软件包 node-v8.2.1.tar.gz 到/opt
yum install gcc gcc-c++ make -ycd /opt
tar zxvf node-v8.2.1.tar.gzcd node-v8.2.1/
./configure
make && make install

  3.2 安装 phantomjs:

#上传软件包 phantomjs-2.1.1-linux-x86_64.tar.bz2 到
cd /opt
tar jxvf phantomjs-2.1.1-linux-x86_64.tar.bz2
cd /opt/phantomjs-2.1.1-linux-x86_64/bin
cp phantomjs /usr/local/bin

  3.3 安装 Elasticsearch-head 数据可视化工具:

#上传软件包 elasticsearch-head-master.zip 到/opt
cd /opt
unzip elasticsearch-head-master.zip
cd /opt/elasticsearch-head/
npm install		 //安装依赖包

  3.4 修改 Elasticsearch 主配置文件:

vim /etc/elasticsearch/elasticsearch.yml
......
--末尾添加以下内容--
http.cors.enabled: true				#开启跨域访问支持,默认为 false
http.cors.allow-origin: "*"			#指定跨域访问允许的域名地址为所有systemctl restart elasticsearch

  3.5 启动 elasticsearch-head 服务:

#必须在解压后的 elasticsearch-head 目录下启动服务,进程会读取该目录下的 gruntfile.js 文件,否则可能启动失败。
cd /usr/local/src/elasticsearch-head/
npm run start &

> elasticsearch-head@0.0.0 start /usr/local/src/elasticsearch-head
> grunt server

Running "connect:server" (connect) task
Waiting forever...
Started connect web server on http://localhost:9100
   出现这个便是成功

    #elasticsearch-head 监听的端口是 9100
netstat -natp |grep 9100

   #通过 Elasticsearch-head 查看 Elasticsearch 信息
通过浏览器访问 http://192.168.88.101:9100/ 地址并连接群集。如果看到群集健康值为 green 绿色,代表群集很健康。

 4. Apache 节点 ELK Logstash 部署:

Logstash 一般部署在需要监控其日志的服务器。在本案例中,Logstash 部署在 Apache 服务器上,用于收集 Apache 服务器的日志信息并发送到 Elasticsearch。

  4.1 安装Apahce服务(httpd):

yum -y install httpd
systemctl start httpd

  4.2 安装Java环境:

yum -y install javajava -version     ##查看版本

  4.3 安装logstash:

#上传软件包 logstash-6.7.2.rpm 到/opt目录下
cd /opt
rpm -ivh logstash-6.7.2.rpm                          
systemctl start logstash.service                      
systemctl enable logstash.serviceln -s /usr/share/logstash/bin/logstash /usr/local/bin/

  4.4 测试 Logstash:

Logstash 命令常用选项:
-f:通过这个选项可以指定 Logstash 的配置文件,根据配置文件配置 Logstash 的输入和输出流。
-e:从命令行中获取,输入、输出后面跟着字符串,该字符串可以被当作 Logstash 的配置(如果是空,则默认使用 stdin 作为输入,stdout 作为输出)。
-t:测试配置文件是否正确,然后退出。

定义输入和输出流:
#输入采用标准输入,输出采用标准输出(类似管道),新版本默认使用 rubydebug 格式输出
logstash -e 'input { stdin{} } output { stdout{} }'#使用 rubydebug 输出详细格式显示,codec 为一种编解码器
logstash -e 'input { stdin{} } output { stdout{ codec=>rubydebug } }'

#使用 Logstash 将信息写入 Elasticsearch 中
logstash -e 'input { stdin{} } output { elasticsearch { hosts=>["192.168.88.101:9200"] } }'

#修改 Logstash 配置文件,让其收集系统日志/var/log/messages,并将其输出到 elasticsearch 中。

chmod +r /var/log/messages                    #让 Logstash 可以读取日志cd /etc/logstash/conf.d/
vim system.conf
input {file{path =>"/var/log/messages"type =>"system"start_position =>"beginning"# ignore_older => 604800sincedb_path => "/etc/logstash/sincedb_path/log_progress"add_field => {"log_hostname"=>"${HOSTNAME}"}}
}output {elasticsearch {                                                #输出到 elasticsearchhosts => ["192.168.80.10:9200","192.168.80.11:9200"]    #指定 elasticsearch 服务器的地址和端口index =>"system-%{+YYYY.MM.dd}"                            #指定输出到 elasticsearch 的索引格式}
}

#path表示要收集的日志的文件位置
#type是输入ES时给结果增加一个叫type的属性字段
#start_position可以设置为beginning或者end,beginning表示从头开始读取文件,end表示读取最新的,这个要和ignore_older一起使用
#ignore_older表示了针对多久的文件进行监控,默认一天,单位为秒,可以自己定制,比如默认只读取一天内被修改的文件
#sincedb_path表示文件读取进度的记录,每行表示一个文件,每行有两个数字,第一个表示文件的inode,第二个表示文件读取到的位置(byteoffset)。默认为$HOME/.sincedb*
#add_field增加属性。这里使用了${HOSTNAME},即本机的环境变量,如果要使用本机的环境变量,那么需要在启动命令上加--alow-env

mkdir /etc/logstash/sincedb_path/
touch /etc/logstash/sincedb_path/log_progress
chown logstash:logstash /etc/logstash/sincedb_path/log_progresslogstash -f system.conf

    浏览器访问 http://192.168.88.101:9100/ 查看索引信息

 5. Node1 ELK Kiabana 部署:

  5.1 安装 Kiabana:

#上传软件包 kibana-6.7.2-x86_64.rpm 到/opt目录
cd /opt
rpm -ivh kibana-6.7.2-x86_64.rpm

  5.2 设置 Kibana 的主配置文件:

     配置文件最后一行更改:  i18n.locale: "zh-CN"  可以把kibana界面切换成中文

vim /etc/kibana/kibana.yml
--2--取消注释,Kiabana 服务的默认监听端口为5601
server.port: 5601
--7--取消注释,设置 Kiabana 的监听地址,0.0.0.0代表所有地址
server.host: "0.0.0.0"
--28--取消注释,配置es服务器的ip,如果是集群则配置该集群中master节点的ip
elasticsearch.url:  ["http://192.168.80.10:9200","http://192.168.80.11:9200"] 
--37--取消注释,设置在 elasticsearch 中添加.kibana索引
kibana.index: ".kibana"
--96--取消注释,配置kibana的日志文件路径(需手动创建),不然默认是messages里记录日志
logging.dest: /var/log/kibana.log

  5.3 创建日志文件,启动 Kibana 服务:

touch /var/log/kibana.log
chown kibana:kibana /var/log/kibana.logsystemctl start kibana.service
systemctl enable kibana.servicenetstat -natp | grep 5601

  5.4 验证kibana, 添加Elasticsearch 索引:

Management -> Index Pattern -> Create index pattern
Index pattern 输入:system-*    #在索引名中输入之前配置的 Output 前缀“system”

Next step -> Time Filter field name 选择 @timestamp -> Create index pattern

单击 “Discover” 按钮可查看图表信息及日志信息。
数据展示可以分类显示,在“Available Fields”中的“host”,然后单击 “add”按钮,可以看到按照“host”筛选后的结果

  5.5 收集 Apache 服务器的日志:

将(访问的、错误的)添加到 Elasticsearch 并通过 Kibana 显示

vim /etc/logstash/conf.d/apache_log.confinput {file{path => "/etc/httpd/logs/access_log"type => "access"start_position => "beginning"}file{path => "/etc/httpd/logs/error_log"type => "error"start_position => "beginning"}
}
output {if [type] == "access" {elasticsearch {hosts => ["192.168.88.101:9200","192.168.88.103:9200"]index => "apache_access-%{+YYYY.MM.dd}"}}if [type] == "error" {elasticsearch {hosts => ["192.168.88.101:9200","192.168.88.103:9200"]index => "apache_error-%{+YYYY.MM.dd}"}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/106295.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[0xGameCTF 2023] web题解

文章目录 [Week 1]signinbaby_phphello_httprepo_leakping [Week 2]ez_sqli方法一&#xff08;十六进制绕过&#xff09;方法二&#xff08;字符串拼接&#xff09; ez_upload [Week 1] signin 打开题目&#xff0c;查看下js代码 在main.js里找到flag baby_php <?php /…

云安全——云计算基础

0x00 前言 学习云安全&#xff0c;那么必然要对云计算相关的内容进行学习和了解&#xff0c;所以云安全会分为两个部分来进行&#xff0c;首先是云计算先关的内容。 0x01 云计算 广泛传播 云计算最早大范围传播是2006年&#xff0c;8月&#xff0c;在圣何塞【1】举办的SES&a…

【Vue面试题二十八】、vue要做权限管理该怎么做?如果控制到按钮级别的权限怎么做?

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a;vue要做权限管理该怎么做…

【Java 进阶篇】JavaScript电灯开关案例:从原理到实现

JavaScript是一门强大的编程语言&#xff0c;它可以用来创建各种交互式网页应用。在这篇博客中&#xff0c;我们将通过一个简单的电灯开关案例来深入了解JavaScript的基础概念&#xff0c;包括HTML、CSS和JavaScript的结合使用。我们将从头开始构建这个案例&#xff0c;逐步引入…

PYTHON进阶-面向对象编程

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…

windows计划任务的配置文件

界面操作 创建计划 依次设置 命令行操作 SCHTASKS 命令简介 SCHTASKS 命令是由微软公司开发并内置于 Windows 系统中的一个命令行工具。该命令可用于设置、修改、查询和删除计划任务&#xff0c;或启动计划任务中所定义的程序或脚本。 SCHTASKS 命令的基本语法 SCHTASKS 命…

多输入多输出 | MATLAB实现CNN-BiLSTM-Attention卷积神经网络-双向长短期记忆网络结合SE注意力机制的多输入多输出预测

MATLAB实现CNN-BiLSTM-Attention卷积神经网络-双向长短期记忆网络结合SE注意力机制的多输入多输出预测 目录 MATLAB实现CNN-BiLSTM-Attention卷积神经网络-双向长短期记忆网络结合SE注意力机制的多输入多输出预测预测效果基本介绍程序设计往期精彩参考资料 预测效果 基本介绍 C…

SpringBoot面试题1:什么是SpringBoot?为什么要用SpringBoot?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:什么是SpringBoot? Spring Boot 是一个用于快速开发独立的、基于 Spring 框架的应用程序的开源框架。它简化了 Spring 应用的配置和部署过程,使…

基于秃鹰优化的BP神经网络(分类应用) - 附代码

基于秃鹰优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于秃鹰优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.秃鹰优化BP神经网络3.1 BP神经网络参数设置3.2 秃鹰算法应用 4.测试结果&#xff1a;5.M…

智慧公厕高精尖技术揭秘,让卫生管理更智能、更舒适

随着科技的飞速发展&#xff0c;智慧公厕正逐渐走进人们的生活。借助物联网、互联网、云计算、大数据、人工智能、自动化控制等技术的应用&#xff0c;智慧公厕将卫生管理提升到一个全新的水平&#xff0c;为公众打造了清洁舒适的使用环境。本文以智慧公厕源头厂家广州中期科技…

【Vue面试题二十九】、Vue项目中你是如何解决跨域的呢?

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a;Vue项目中你是如何解决跨…

C# OpenVINO 通用OCR识别 文字识别 中文识别 服务

软件说明 基于以下开源项目&#xff0c;做了再次封装 https://github.com/sdcb/OpenVINO.NET 自带模型&#xff0c;可离线部署&#xff1b; 技术路线&#xff1a;VS2022Sdcb.OpenVINOSdcb.OpenVINO.PaddleOCROpenCvSharpNLogNancy.Hosting.Self 软件界面 开启服务 测试 耗时…

二、K8S之Pods

Pod 一、概念 K8S作为一个容器编排管理工具&#xff0c;它可以自动化容器部署、容器扩展、容器负载均衡等任务&#xff0c;并提供容器的自愈能力等功能。在Kubernetes中&#xff0c;Pod是最基本的调度单元&#xff0c;它是一组共享存储和网络资源的容器集合&#xff0c;通常是…

计算机毕业设计-开题报告答辩常见问题!Javaweb项目答辩

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…

快速学习MyBatisPlus

文章目录 前言一、条件构造器和常用接口1.wapper介绍2.QueryWrapper&#xff08;1&#xff09;组装查询条件&#xff08;2&#xff09;组装排序查询&#xff08;3&#xff09;组装删除查询&#xff08;4&#xff09;条件优先级&#xff08;5&#xff09;组装select子句&#xf…

如何使用摩尔信使MThings连接网络设备

帽子&#xff1a; 摩尔信使MThings支持Modbus-TCP、Modbus-RTU Over TCP、Modbus-TCP Over UDP、Modbus-RTU Over UDP。 TCP链接中&#xff0c;摩尔信使MThings支持灵活的连接方式&#xff0c;主机可作为客户端也可以作为服务端&#xff0c;同时支持模拟从机以客户端方式向远…

283 移动零

解题思路&#xff1a; \qquad 适用双指针&#xff0c;l&#xff1a;最左边‘0’元素坐标&#xff1b;r&#xff1a;l右边第一个非零元素坐标。 \qquad 最初的思路&#xff1a;将l和r初始化为0&#xff0c;遍历数组nums若任意一个指针到达数组末尾时停止。若当前nums[l] 0则移…

Leetcode——数组的改变、移动练习

453. 最小操作次数使数组元素相等 本人答案超时 class Solution { public:int minMoves(vector<int>& nums) {int len nums.size();int count 0;if (len 1) {count 0;}else {while (nums[0] ! nums[1] || nums[len - 2] ! nums[len - 1]) {for (int i 0; i <…

【QT】Ubuntu 交叉编译安装 QT 5.12.7 源码

目录 1、下载 QT 源码包 2、搭建安装环境(下载依赖库) 3、创建QT源码编译脚本 4、运行编译脚本 1、下载 QT 源码包 QT5.12.7源码下载地址: download | QT 5.12.7 选择任意一种下载即可&#xff0c;适用于 Windows 和 Linux 环境 这里选择的是.tar.xz 类型&#xff0c;上…

联邦学习综述三

A Survey on Federated Learning Systems Vision Hype and Reality for Data Privacy and Protection 选自&#xff1a;IEEE Transactions on Knowledge and Data Engineering&#xff0c;2021 链接 本文主要从数据分布、机器学习模型、隐私机制、通信架构、联邦规模和联邦动…