回归预测 | MATLAB实现IBES-ELM基于改进的秃鹰搜索优化算法优化极限学习机的数据回归预测(多指标,多图)

回归预测 | MATLAB实现IBES-ELM 基于改进的秃鹰搜索优化算法优化极限学习机的数据回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现IBES-ELM 基于改进的秃鹰搜索优化算法优化极限学习机的数据回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3

基本介绍

1.MATLAB实现IBES-ELM基于改进的秃鹰搜索优化算法优化极限学习机的数据回归预测(多指标,多图)。
2.直接替换Excel数据即可用,注释清晰,适合新手小白
3.附赠示例数据,输入格式如图2所示,直接运行main文件一键出图。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现IBES-ELM 基于改进的秃鹰搜索优化算法优化极限学习机的数据回归预测(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/106197.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

变分自动编码器 (VAE)02/2 PyTorch 教程

一、说明 在自动编码器中,来自输入数据的信息被映射到固定的潜在表示中。当我们旨在训练模型以生成确定性预测时,这特别有用。相比之下,变分自动编码器(VAE)将输入数据转换为变分表示向量(顾名思义&#xf…

python 练习--更新

1.判断一个列表中的数值是否全部小于某个数 方法一:利用if函数 (只要列表中有一个数字比大 就可以终止比较) n int(input("请输入需要比较的数字:")) arr1 [1,3,4,5,8] index 0 for i in arr1:if i > n:index 1continue…

服务器崩溃前的数据拯救实践

前言 在服务器的VMWARE ESXi系统环境中,我们经常需要创建虚拟机来运行各种应用程序。然而,服务器如果偶尔出现自动重启以及紫屏报错的问题,说明服务器内部出现了故障,一般情况下重启机器能够解决问题,但时间一长&…

[23] IPDreamer: Appearance-Controllable 3D Object Generation with Image Prompts

pdf Text-to-3D任务中,对3D模型外观的控制不强,本文提出IPDreamer来解决该问题。在NeRF Training阶段,IPDreamer根据文本用ControlNet生成参考图,并将参考图作为Zero 1-to-3的控制条件,用基于Zero 1-to-3的SDS损失生成…

一、K8S第一步搭建

一、初始化操作 1.1、关闭防火墙 systemctl stop firewalld systemctl disable firewalld关闭交换空间 swapoff -a # 临时 sed -ri s/.*swap.*/#&/ /etc/fstab # 永久重启才能生效 根据规划设置主机名 hostnamectl set-hostname <hostname>映射主机 cat >>…

网络类型与数据链路层协议

目录 整体大纲图 一、网络类型 二、数据链路层协议 1、MA网络 2、P2P网络 1&#xff09;HDLC协议 2&#xff09;PPP协议 a、特点及其数据帧封装结构 b、组成及其工作过程 c、ppp会话流程及ppp验证 d、ppp配置命令 f、ppp mp 整体大纲图 一、网络类型 二、数据链路层…

系统文件IO、文件描述符fd、重定向、文件系统、动态库和静态库

目录 C文件接口系统文件I/O系统调用和库函数文件描述符0 & 1 & 2FILE和fd的关系文件描述符的分配规则 重定向重定向的本质输出重定向输入重定向追加重定向 dup2函数 FILE理解文件系统了解磁盘的物理结构逻辑抽象文件系统文件系统的图解和解析通过文件系统来理解ls -al通…

MySQL 3 环境搭建 MySQL 5.7版本的安装、配置

MySQL5.7.43官网下载地址 MySQL :: Download MySQL Community Server 这里选5.7.43&#xff0c;Windows版本&#xff0c;然后点击Go to Download Page&#xff0c;下载msi安装包的版本 MSI安装包版本比ZIP压缩包版本的安装过程要简单的多&#xff0c;过程更加清楚直观&#x…

MATLAB——径向基神经网络预测程序

欢迎关注公众号“电击小子程高兴的MATLAB小屋” %% 学习目标&#xff1a;径向基神经网络 %% 可以以任意精度逼近任意连续函数 clear all; close all; P1:10; T[2.523 2.434 3.356 4.115 5.834 6.967 7.098 8.315 9.387 9.928]; netnewrbe(P,T,2); %建立精确的径向基…

KMP 算法 + 详细笔记

给两个字符串&#xff0c;T"AAAAAAAAB"&#xff0c;P"AAAAB"; 可以暴力匹配&#xff0c;但是太费时和效率不太好。于是KMP问世&#xff0c;我们一起来探究一下吧&#xff01;&#xff01;&#xff01; &#xff08;一&#xff09;最长公共前后缀 D[i] p[…

【C/C++数据结构 - 2】:稳定性与优化揭秘,揭开插入排序、希尔排序和快速排序的神秘面纱!

文章目录 排序的稳定性插入排序插入排序的优化 希尔排序快速排序 排序的稳定性 稳定排序&#xff1a;排序前2个相等的数在序列中的前后位置顺序和排序后它们2个的前后位置顺序相同。&#xff08;比如&#xff1a;冒泡、插入、基数、归并&#xff09; 非稳定排序&#xff1a;排…

UVa658 It’s not a Bug, it’s a Feature!(Dijkstra)

题意 给出一个包含n个bug的应用程序&#xff0c;以及m个补丁&#xff0c;每个补丁使用两个字符串表示&#xff0c;第一个串表示补丁针对bug的情况&#xff0c;即哪些bug存在&#xff0c;以及哪些bug不存在&#xff0c;第二个串表示补丁对bug的修复情况&#xff0c;即修复了哪些…

进化算法------微生物进化算法(MGA)

前言 该文章写在GA算法之后&#xff1a;GA算法 遗传算法 (GA)的问题在于没有有效保留好的父母 (Elitism), 让好的父母不会消失掉. Microbial GA (后面统称 MGA) 就是一个很好的保留 Elitism 的算法. 一句话来概括: 在袋子里抽两个球, 对比两个球, 把球大的放回袋子里, 把球小…

ARMv5架构对齐访问异常问题

strh非对齐访问 在ARMv5架构中&#xff0c;对于strh指令&#xff08;Store Halfword&#xff09;&#xff0c;通常是要求对地址进行对齐访问的。ARMv5架构对于半字&#xff08;Halfword&#xff09;的存储操作有对齐要求&#xff0c;即地址必须是2的倍数。 如果尝试使用strh指…

2024北京国际光刻设备及光掩膜技术展览会

2024北京国际光刻设备及光掩膜技术展览会 Beijing Photolithography Equipment and Mask Application Technology Exhibition2024 基本信息 时间&#xff1a;2024年7月24-26日 地点&#xff1a;北京国家会议中心 展会简介 微电子技术的发展一直是光刻设备和技术变革的动力&…

二、使用DockerCompose部署RocketMQ

使用DockerCompose进行部署 RocketMQ的部署方式以及各自的特点 单master模式 只有一个 master 节点&#xff0c;如果master节点挂掉了&#xff0c;会导致整个服务不可用&#xff0c;线上不宜使用&#xff0c;适合个人学习使用。 多master模式 和kafka不一样&#xff0c;Rocke…

vue3 状态管理pinia

1. 什么是Pinia Pinia 是 Vue 的专属的最新状态管理库 &#xff0c;是 Vuex 状态管理工具的替代品 特点优势: 提供更加简单的API(去掉了mutation)提供符合组合式风格的API(和Vue3新语法统一)去掉modules的概念,每一个store都是一个独立的模块配合TypeScript更加友好,提供可靠的…

网站的常见攻击与防护方法

在互联网时代&#xff0c;几乎每个网站都存在着潜在的安全威胁。这些威胁可能来自人为失误&#xff0c;也可能源自网络犯罪团伙所发起的复杂攻击。无论攻击的本质如何&#xff0c;网络攻击者的主要动机通常是谋求经济利益。这意味着无论您经营的是电子商务项目还是小型商业网站…

【Redis】Set集合相关的命令

目录 命令SADDSMEMBERSSISMEMBERSCARDSPOPSMOVESREMSINTERSINTERSTORESUNIONSUNIONSTORESDIFFSDIFFSTORE 命令 SADD 将⼀个或者多个元素添加到set中。注意&#xff0c;重复的元素⽆法添加到set中。 SADD key member [member ...]SMEMBERS 获取⼀个set中的所有元素&#xff0…

vector Autosar someip和vsomeip协议调试总结

someip是现代车辆通信的主流通信协议知一&#xff1b; someip的主要涉及模型以及协议结构&#xff0c;我就不做多的做介绍了&#xff0c;如有需要请读者自行进行百度学些&#xff1b; 虽然someip协议已经基本成熟&#xff0c;但有多个实现版本&#xff0c;现在使用较多的主要…