基于静电放电优化的BP神经网络(分类应用) - 附代码

基于静电放电优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于静电放电优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.静电放电优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 静电放电算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用静电放电算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.静电放电优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 静电放电算法应用

静电放电算法原理请参考:https://blog.csdn.net/u011835903/article/details/118755197

静电放电算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从静电放电算法的收敛曲线可以看到,整体误差是不断下降的,说明静电放电算法起到了优化的作用:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/106028.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

电动力学专题研讨:运动电荷之间的相互作用是否满足牛顿第三定律?

电动力学专题研讨:运动电荷之间的相互作用是否满足牛顿第三定律?​​​​​​​ 两个稳恒电流元之间的相互作用不一定服从牛顿第三定律常见的解释是:稳恒电流元是不能孤立存在的,因此不能得出结论 符号约定 两个运动点电荷之间的力…

文心一言 VS 讯飞星火 VS chatgpt (113)-- 算法导论10.2 5题

五、用go语言,使用单向循环链表实现字典操作 INSERT、DELETE 和 SEARCH,并给出所写过程的运行时间。 文心一言: 在Go语言中,我们首先需要定义一个Node结构体来表示单向循环链表的节点,然后再定义一个LinkedList结构体…

Redis 分布式锁 @Klock 注解详解及使用教程

文章目录 一、作用二、参数三、锁的流程四、SpringBoot 集成1. pom 依赖2. yaml 配置3. 使用方式 五、变量级锁和方法级锁六、常见应用场景1. 页面重复提交2. 定时任务3. 核心业务 七、锁的粒度与锁的时间 一、作用 注解 klock 是基于 Redis 的分布式锁,作用在分布…

CCF CSP认证 历年题目自练Day29

题目一 试题编号: 202112-1 试题名称: 序列查询 时间限制: 300ms 内存限制: 512.0MB 样例1输入 3 10 2 5 8 样例1输出 15 样例2输入 9 10 1 2 3 4 5 6 7 8 9 样例2输出 45 题目分析(个人理解) 还是…

Chrome Extensions v3 迁移清单

一、前置问题 1.1为什么需要迁移 v3? Chrome 计划完全停止 v2 版本维护,后续 v2 版本将无法上架谷歌插件商店,除此之外,未来新版本 Chrome 对于 v2 版本插件的限制会越来越大,比如安全性限制 iframe 嵌套只能通过沙盒…

云原生Kubernetes:Rancher管理k8s集群

目录 一、理论 1.Rancher 2.Rancher 安装及配置 二、实验 1.Rancher 安装及配置 三、问题 1. Rancher 部署监控系统报错 四、总结 一、理论 1.Rancher (1) 概念 Rancher 简介 Rancher 是一个开源的企业级多集群 Kubernetes 管理平台,实现了 Kubernetes …

利用MobaXterm连接服务器的全程配置

一、服务器上的操作 1.1 保证openssh的安装 openssh安装命令如下 apt-get update apt install openssh-server1.2 保证SSH服务没有在相应端口上侦听连接 1确保本地 SSH 服务正在运行 可以尝试使用以下命令检查 SSH 服务的状态(在大多数 Linux 系统上&#xff0…

分布式存储系统Ceph应用详解

Ceph的应用 一、Ceph 存储池(Pool)1.1 Ceph存储池的基本概念1.2 原理1.3 一个Pool资源池应该包含多少PG数?1.4 Ceph 存储池相关管理命令1.4.1 创建1.4.2 查看1.4.3 修改1.4.4 删除 二、 CephFS文件系统MDS接口三、创建CephFS文件系统MDS接口3.1 服务端操作Step1 在管…

【frp实现内网穿透踩坑到成功篇】

【frp实现内网穿透踩坑到成功篇】 背景&需求配置服务器端配置客户端总结 背景&需求 白嫖了一个tencent入门级服务器 ∗ 1 *1 ∗1,学校实验室内网服务器 ∗ 1 *1 ∗1,需要访问内网的服务器。一顿搜寻资料后确定大致的路子: 第一步是…

虹科分享 | 独特的FRER机制:TSN如何确保网络的可靠性?

1.IEEE802.1 CB协议 Frame Replication and Elimination for Reliability(FRER)是IEEE 802.1CB协议的一个重要特性,旨在增强以太网网络的可靠性。FRER利用帧复制和消除技术提供冗余保护和从连接故障中快速恢复。 FRER-IEEE 802.1CB协议的应用场景: 高…

【HttpRunner】接口自动化测试框架

简介 2018年python开发者大会上,了解到HttpRuuner开源自动化测试框架,采用YAML/JSON格式管理用例,能录制和转换生成用例功能,充分做到用例与测试代码分离,相比excel维护测试场景数据更加简洁。在此,利用业…

阿里云韩国服务器测试IP地址及公网带宽收费价格表

阿里云服务器韩国(首尔)地域公网带宽价格表,1M带宽价格是23.0元/月,按使用流量1GB价格是0.8元,阿里云韩国服务器测试IP地址:149.129.12.20,阿里云百科aliyunbaike.com来详细说下阿里云韩国服务器…

火伞云Web应用防火墙的特点与优势

在前文中,我们已经介绍了Web应用防火墙(WAF)的基本原理和重要性。接下来,我们将深入探讨火伞云Web应用防火墙的特点与优势,了解它如何为企业提供更为完善和专业的网络安全保障。 一、强大的防御能力 火伞云Web应用防火…

SVN报错fail to run the WC Db work queue associated with,清理失败,乱码的解决方式

替换掉 wc.db 文件即可 SVN报错fail to run the WC Db work queue associated with,清理失败,乱码的解决方式_svn failed to run the wc db-CSDN博客

再谈Java泛型

一.类型参数的约束 我们可以对泛型传进来的参数做一些约束,比如说 用extends表明传进来的参数类型必须是必须是某个类型的子类型或者本身 当然也可以用接口约束,也是用extends表明传进来的参数类型必须实现某个接口。用&连接,注意class…

python+深度学习+opencv实现植物识别算法系统 计算机竞赛

0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的植物识别算法研究与实现 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分工作量:4分创新点:4分 🧿 更多…

论文阅读/写作扫盲

第一节:期刊科普 JCR分区和中科院分区是用于对期刊进行分类和评估的两种常见方法。它们的存在是为了帮助学术界和研究人员更好地了解期刊的学术质量、影响力和地位。 JCR分区(Journal Citation Reports):JCR分区是由Clarivate Ana…

虹科方案 | AR助力仓储物流突破困境:规模化运营与成本节约

文章来源:虹科数字化AR 点击阅读原文:https://mp.weixin.qq.com/s/xis_I5orLb6RjgSokEhEOA 虹科方案一览 HongKe DigitalizationAR 当今的客户体验要求企业在人员、流程和产品之间实现全面的连接。为了提升整个组织的效率并提高盈利能力,物流…

【2023】redis-stream配合spring的data-redis详细使用(包括广播和组接收)

目录 一、简介1、介绍2、对比 二、整合spring的data-redis实现1、使用依赖2、配置类2.1、配置RedisTemplate bean2.2、异常类 3、实体类3.1、User3.2、Book 4、发送消息4.1、RedisStreamUtil工具类4.2、通过延时队列线程池模拟发送消息4.3、通过http主动发送消息 5、&#x1f3…