1.1 向量与线性组合

一、向量的基础知识

两个独立的数字 v 1 v_1 v1 v 2 v_2 v2,将它们配对可以产生一个二维向量 v \boldsymbol{v} v 列向量 v v = [ v 1 v 2 ] v 1 = v 的第一个分量 v 2 = v 的第二个分量 \textbf{列向量}\,\boldsymbol v\kern 10pt\boldsymbol v=\begin{bmatrix}v_1\\v_2\end{bmatrix}\kern 10pt\begin{matrix}v_1=\boldsymbol v\,的第一个分量\\v_2=\boldsymbol v\,的第二个分量\end{matrix} 列向量vv=[v1v2]v1=v的第一个分量v2=v的第二个分量这里将 v \boldsymbol v v 写成一列(column),而不是一行(row),单一的字母 v \boldsymbol v v粗斜体字)表示这一对数字 v 1 v_1 v1 v 2 v_2 v2(浅色斜体字)。
向量的一个基础运算是向量的加法,即将两个向量的每个分量分别相加: 向量加法 v = [ v 1 v 2 ] 与 w = [ w 1 w 2 ] 相加得到 v + w = [ v 1 + w 1 v 2 + w 2 ] \textbf{向量加法}\kern 10pt\boldsymbol v=\begin{bmatrix}v_1\\v_2\end{bmatrix}\kern 5pt与\kern 5pt\boldsymbol w=\begin{bmatrix}w_1\\w_2\end{bmatrix}\kern 5pt相加得到\kern5pt\boldsymbol v+\boldsymbol w=\begin{bmatrix}v_1+w_1\\v_2+w_2\end{bmatrix} 向量加法v=[v1v2]w=[w1w2]相加得到v+w=[v1+w1v2+w2]减法同理, v − w \boldsymbol v-\boldsymbol w vw 的分量是 v 1 − w 1 v_1-w_1 v1w1 v 2 − w 2 v_2-w_2 v2w2
向量的另一个基础运算是数乘(scalar multiplication),一个向量可以和任意数 c c c 相乘,就是用 c c c 去乘这个向量的每个分量: 数乘 2 v = [ 2 v 1 2 v 2 ] = v + v , − v = [ − v 1 − v 2 ] \textbf{数乘}\kern 10pt2\boldsymbol v=\begin{bmatrix}2v_1\\2v_2\end{bmatrix}=\boldsymbol v+\boldsymbol v,-\boldsymbol v=\begin{bmatrix}-v_1\\-v_2\end{bmatrix} 数乘2v=[2v12v2]=v+vv=[v1v2] c v c\boldsymbol v cv 的分量是 c v 1 cv_1 cv1 c v 2 cv_2 cv2,数字 c c c 称为 “数量”(或纯量 scalar)。
需要注意的是: − v -\boldsymbol v v v \boldsymbol v v 的和(sum)是零向量,以粗体 0 \boldsymbol 0 0 表示,与一般的数字 0 0 0 不同,向量 0 \boldsymbol 0 0 的分量是 0 0 0 0 0 0
线性代数就是建立在 v + w \boldsymbol v+\boldsymbol w v+w c v c\boldsymbol v cv d w d\boldsymbol w dw 的运算 —— 向量的加法与数乘

二、线性组合

将向量的加法与数乘相结合可以产生 v \boldsymbol v v w \boldsymbol w w 的 “线性组合”。用 c c c v \boldsymbol v v d d d w \boldsymbol w w,然后相加得到 c v + d w c\boldsymbol v+d\boldsymbol w cv+dw c v 与 d w 的和是 线性组合 c v + d w c\boldsymbol v\,与\,d\boldsymbol w\,的和是\kern 10pt\colorbox{cyan}{$线性组合\,\ c\boldsymbol v+d\boldsymbol w$} cvdw的和是线性组合 cv+dw四种特殊的线性组合:和、差、零、数乘 c v c\boldsymbol v cv
1 v + 1 w = 向量的和,如图 1.1 a 1\boldsymbol v+1\boldsymbol w=向量的和,如图1.1a 1v+1w=向量的和,如图1.1a 1 v − 1 w = 向量的差,如图 1.1 b 1\boldsymbol v-1\boldsymbol w=向量的差,如图1.1b 1v1w=向量的差,如图1.1b 0 v + 0 w = 零向量 0\boldsymbol v+0\boldsymbol w=\textbf{零向量}\kern 56pt 0v+0w=零向量 c v + 0 w = 沿着 v 方向的向量 c v c\boldsymbol v+0\boldsymbol w=沿着\,\boldsymbol v 方向的向量\,c\boldsymbol v cv+0w=沿着v方向的向量cv零向量永远是可能的组合(只要系数都为零),向量的 “空间” 都包含零向量。从大局上看,线性代数的工作就是取得 v \boldsymbol v v w \boldsymbol w w 所有的线性组合。
对于代数来说,我们只需要向量的分量(如 4 4 4 2 2 2)。向量也可以画在图形上,向量 v \boldsymbol v v 由箭头表示,箭头向右横跨 v 1 = 4 v_1=4 v1=4 个单位,再往上走 v 2 = 2 v_2=2 v2=2 个单位,终点的坐标等于 ( 4 , 2 ) (4,2) (4,2)。这个点就是向量的另外一种表示法。向量 v \boldsymbol v v 可以用三种方式来描述: 向量 v 的表示法 两个数字 由 ( 0 , 0 ) 出发的箭头 平面上的点 向量\,\boldsymbol v\,的表示法\kern 10pt\colorbox{cyan}{两个数字}\,\,\colorbox{cyan}{由$(0,0)$出发的箭头}\,\,\colorbox{cyan}{平面上的点} 向量v的表示法两个数字(0,0)出发的箭头平面上的点我们用数字做加法,用箭头可视化 v + w \boldsymbol v+\boldsymbol w v+w

在这里插入图片描述
先沿着 v \boldsymbol v v 再沿着 w \boldsymbol w w 前进,或者沿着 v + w \boldsymbol v+\boldsymbol w v+w 走对角线;也可以先沿着 w \boldsymbol w w 再沿着 v \boldsymbol v v。换言之, w + v \boldsymbol w+\boldsymbol v w+v v + w \boldsymbol v+\boldsymbol w v+w 的答案相同。沿着平行四边形(本例是矩形)存在不同的前进方向。

三、三维向量

有两个分量的向量对应到 x y xy xy 平面上的一个点, v \boldsymbol v v 的分量就是点的坐标: x = v 1 x=v_1 x=v1 y = v 2 y=v_2 y=v2。向量从 ( 0 , 0 ) (0,0) (0,0) 出发,箭头在 ( v 1 , v 2 ) (v_1,v_2) (v1v2) 结束。
如果向量有三个分量,那么就对应三维的 x y z xyz xyz 空间中的一点。下面的列向量就有三个分量: v = [ 1 1 − 1 ] , w = [ 2 3 4 ] , v + w = [ 3 4 3 ] \boldsymbol v=\begin{bmatrix}1\\1\\-1\end{bmatrix},\boldsymbol w=\begin{bmatrix}2\\3\\4\end{bmatrix},\boldsymbol v+\boldsymbol w=\begin{bmatrix}3\\4\\3\end{bmatrix} v= 111 w= 234 v+w= 343 向量 v \boldsymbol v v 对应到三维空间的一个箭头,通常由原点出发,原点即 x y z xyz xyz 轴的交点,其坐标为 ( 0 , 0 , 0 ) (0,0,0) (0,0,0),箭头的终点坐标是 v 1 v_1 v1 v 2 v_2 v2 v 3 v_3 v3。三维向量同样有三种表示方式:列向量原点出发的箭头箭头的终点(空间中一点)
注意,平面向量 ( x , y ) (x,y) (x,y) 与三维空间的 ( x , y , 0 ) (x,y,0) (x,y,0) 是不同的。

在这里插入图片描述 v = [ 1 1 − 1 ] 也可以写成 v = ( 1 , 1 , − 1 ) \boldsymbol v=\begin{bmatrix}1\\1\\-1\end{bmatrix}\,\,也可以写成\,\,\boldsymbol v=(1,1,-1) v= 111 也可以写成v=(1,1,1)写成行形式(在括号中)是为了节省空间,但是 v = ( 1 , 1 , − 1 ) \boldsymbol v=(1,1,-1) v=(1,1,1) 不是行向量!它仍是列向量,与行向量 [ 1 1 − 1 ] [1\kern 6pt1\,-1] [111] 是不同的,尽管它们都具有三个分量。这里 1 × 3 1\times3 1×3 的行向量是 3 × 1 3\times1 3×1 的列向量 v \boldsymbol v v 的 “转置”(transpose)。
三维空间中, v + w \boldsymbol v+\boldsymbol w v+w 仍然是每次计算一个分量,向量的和的分量是 v 1 + w 1 v_1+w_1 v1+w1 v 2 + w 2 v_2+w_2 v2+w2 v 3 + w 3 v_3+w_3 v3+w3,同理可以推出 4 4 4 维直至 n n n 维空间中向量的加法。当 w \boldsymbol w w v \boldsymbol v v 的终点出发,则第三边为 v + w \boldsymbol v+\boldsymbol w v+w,平行四边形的另一个环绕方向是 w + v \boldsymbol w+\boldsymbol v w+v。这四个边是在同一平面的,向量的和 v + w − v − w \boldsymbol v+\boldsymbol w-\boldsymbol v-\boldsymbol w v+wvw 走完一圈产生零向量
三维空间三个向量的线性组合, u + 4 v − 2 w \boldsymbol u+4\boldsymbol v-2\boldsymbol w u+4v2w:分别用 1 1 1 4 4 4 − 2 -2 2 乘三个向量再相加的线性组合 [ 1 0 3 ] + 4 [ 1 2 1 ] − 2 [ 2 3 − 1 ] = [ 1 2 9 ] \begin{bmatrix}1\\0\\3\end{bmatrix}+4\begin{bmatrix}1\\2\\1\end{bmatrix}-2\begin{bmatrix}2\\3\\-1\end{bmatrix}=\begin{bmatrix}1\\2\\9\end{bmatrix} 103 +4 121 2 231 = 129

四、重要问题

一个向量 u \boldsymbol u u,唯一的线性组合是 c u c\boldsymbol u cu。对于两个向量,线性组合是 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv。对于三个向量,线性组合是 c u + d v + e w c\boldsymbol u+d\boldsymbol v+e\boldsymbol w cu+dv+ew。对于每个 c c c d d d e e e,假设 u \boldsymbol u u v \boldsymbol v v w \boldsymbol w w 是三维空间中的向量:
(1)所有 c u c\boldsymbol u cu 的组合,图形是什么?
(2)所有 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 的组合,图形是什么?
(3)所有 c u + d v + e w c\boldsymbol u+d\boldsymbol v+e\boldsymbol w cu+dv+ew 的组合,图形是什么?
上述的答案都与 u \boldsymbol u u v \boldsymbol v v w \boldsymbol w w 有关,若它们均为零向量,所有的线性组合都是零。如果它们都是典型的非零向量(随机选定分量,即它们两两不平行,三个向量不共面):
(1)所有 c u c\boldsymbol u cu 的组合形成一条过原点(0,0,0)的直线
(2)所有的 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 的组合形成一个 过(0,0,0)的平面
(3)所有的 c u + d v + e w c\boldsymbol u+d\boldsymbol v+e\boldsymbol w cu+dv+ew 的组合形成三维空间
因为当 c c c 0 0 0 时,零向量 ( 0 , 0 , 0 ) (0,0,0) (0,0,0) 会在直线上;当 c c c d d d 都为 0 0 0 时,零向量会在平面上。向量 c u c\boldsymbol u cu 形成的直线是无限长(正向与反向)的,三维空间中两个向量的组合,全部 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 会形成三维空间内一个平面,且过原点;一条直线上的所有 c u c\boldsymbol u cu 加上另一条直线上的所有 d v d\boldsymbol v dv 就会形成 Figure1.3 所示的平面。
在这里插入图片描述
当引入第三个向量 w \boldsymbol w w 时,所有的 e w e\boldsymbol w ew 会得到第三条直线。假设第三条直线不在 u \boldsymbol u u v \boldsymbol v v 形成的平面上,则 e w e\boldsymbol w ew c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 的组合可以形成整个三维空间。
典型情况下,我们会得到线、面、然后空间,但是还会有其它可能的情况。若 w \boldsymbol w w 正好等于 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 时,即第三个向量 w \boldsymbol w w 在前两个向量所形成的平面上,那么 u \boldsymbol u u v \boldsymbol v v w \boldsymbol w w 的组合仍然会在 u v \boldsymbol{uv} uv 平面内,也就不能得到整个三维空间。

五、主要内容总结

(1)二维空间的向量 v \boldsymbol v v 由两个分量 v 1 v_1 v1 v 2 v_2 v2
(2) v + w = ( v 1 + w 1 , v 2 + w 2 ) \boldsymbol v+\boldsymbol w=(v_1+w_1,v_2+w_2) v+w=(v1+w1,v2+w2) c v = ( c v 1 , c v 2 ) c\boldsymbol v=(cv_1,cv_2) cv=(cv1,cv2),每次计算一个分量。
(3)三个向量 u \boldsymbol u u v \boldsymbol v v w \boldsymbol w w 的线性组合是 c u + d v + e w c\boldsymbol u+d\boldsymbol v+e\boldsymbol w cu+dv+ew
(4)选取所有的 u \boldsymbol u u u \boldsymbol u u v \boldsymbol v v u \boldsymbol u u v \boldsymbol v v w \boldsymbol w w 的线性组合,在三维空间中,典型情况下,会形成一条直线一个平面整个空间 R 3 \textbf R^3 R3

六、例题

例1 v = ( 1 , 1 , 0 ) \boldsymbol v=(1,1,0) v=(1,1,0) w = ( 0 , 1 , 1 ) \boldsymbol w=(0,1,1) w=(0,1,1) 的线性组合会形成 R 3 \textbf R^3 R3 中的一个平面,描述这个平面,并找到一个不是 v \boldsymbol v v w \boldsymbol w w 线性组合的向量,即不在该平面上的向量。
解: v \boldsymbol v v w \boldsymbol w w 所形成的平面包含所有的组合 c v + d w c\boldsymbol v+d\boldsymbol w cv+dw,该平面上的向量允许任意和 c c c d d d 线性组合 c v + d w = c [ 1 1 0 ] + d [ 0 1 1 ] = [ c c + d d ] 形成一个平面 线性组合\kern 3ptc\boldsymbol v+d\boldsymbol w=c\begin{bmatrix}1\\1\\0\end{bmatrix}+d\begin{bmatrix}0\\1\\1\end{bmatrix}=\begin{bmatrix}c\\c+d\\d\end{bmatrix}\kern 3pt形成一个平面 线性组合cv+dw=c 110 +d 011 = cc+dd 形成一个平面可以发现其第二分量 c + d c+d c+d 为第一分量与第三分量之和。 ( 1 , 2 , 3 ) (1,2,3) (1,2,3) 即不在这个平面上,这是因为 2 ≠ 1 + 3 2\neq1+3 2=1+3

例2 v = ( 1 , 0 ) \boldsymbol v=(1,0) v=(1,0) w = ( 0 , 1 ) \boldsymbol w=(0,1) w=(0,1),描述所有的 c v c\boldsymbol v cv 点。
(1)当 c c c 为任意整数时;
(2)当 c c c 非负数时, c ≥ 0 c\geq0 c0
再将(1)(2)得到的 c v c\boldsymbol v cv 加上所有的 d w d\boldsymbol w dw,描述所有的 c v + d w c\boldsymbol v+d\boldsymbol w cv+dw
解:(1)当 c c c 为任意整数时,向量 c v = ( c , 0 ) c\boldsymbol v=(c,0) cv=(c,0) 是沿着 x x x 轴( v \boldsymbol v v 的方向)的等距点,包含 ( − 2 , 0 ) (-2,0) (2,0) ( − 1 , 0 ) (-1,0) (1,0) ( 0 , 0 ) (0,0) (0,0) ( 1 , 0 ) (1,0) (1,0) ( 2 , 0 ) (2,0) (2,0)
(2)当 c ≥ 0 c\geq0 c0 时,向量 c v c\boldsymbol v cv 形成一条半线,即 x x x 正半轴。这条线从 ( 0 , 0 ) (0,0) (0,0) 开始,此时 c = 0 c=0 c=0。包含点 ( 100 , 0 ) (100,0) (100,0) ( π , 0 ) (π,0) (π,0),但不包含 ( − 100 , 0 ) (-100,0) (100,0)
(1’)加上所有的向量 d w = ( 0 , d ) d\boldsymbol w=(0,d) dw=(0,d),会在这些等距点 c v c\boldsymbol v cv 上放置一条垂直(vertical)线,将会得到无数条(全部整数 c c c,任意的 d d d)平行线。
(2’)加上所有的向量 d w = ( 0 , d ) d\boldsymbol w=(0,d) dw=(0,d),会在半线上的每一个 c v c\boldsymbol v cv 上放置一条垂直线,将会得到一个半平面, x y xy xy 平面的右半部分包括任意的 x ≥ 0 x\geq0 x0 和任意的 y y y

例3】求出 c c c d d d 的两个方程,使得线性组合 c v + d w = b c\boldsymbol v+d\boldsymbol w=\boldsymbol b cv+dw=b v = [ 2 − 1 ] , w = [ − 1 2 ] , b = [ 1 0 ] \boldsymbol v=\begin{bmatrix}2\\-1\end{bmatrix},\boldsymbol w=\begin{bmatrix}-1\\2\end{bmatrix},\boldsymbol b=\begin{bmatrix}1\\0\end{bmatrix} v=[21]w=[12]b=[10]
解: 在应用数学中,很多问题都有两个部分:

  1. 建模(modeling)部分:利用一些方程式来表述问题。
  2. 计算(computational)部分:利用快速且正确的算法求解方程组。

这里仅讨论第一部分,使用方程组表示。这里可以使用一个线性代数的基础模型: 求 n 个数值 c 1 , ⋯ , c n ,使得 c 1 v + ⋯ c n v n = b 求\,n\,个数值\,c_1,\cdots,c_n,使得\,\,c_1\boldsymbol v+\cdots c_n\boldsymbol v_n=\boldsymbol b n个数值c1,,cn,使得c1v+cnvn=b n = 2 n=2 n=2 时即为此例题的模型。 向量方程式 c v + d w c [ 2 − 1 ] + d [ − 1 2 ] = [ 1 0 ] 向量方程式 \kern 4ptc\boldsymbol v+d\boldsymbol w\kern 10ptc\begin{bmatrix}2\\-1\end{bmatrix}+d\begin{bmatrix}-1\\2\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix} 向量方程式cv+dwc[21]+d[12]=[10]可以得到两个一般方程式: { 2 c − d = 1 − c + 2 d = 1 \left\{\begin{matrix}2c-d=1\\-c+2d=1\end{matrix}\right. {2cd=1c+2d=1每个方程式产生一条直线,两条直线相交可以解得 c = 2 / 3 c=2/3 c=2/3 d = 1 / 3 d=1/3 d=1/3

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/103745.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GPIO子系统(三)

1,简述 GPIO 资源是相对来说较为简单,而且比较通用(比如 LED 灯),而 Linux 的 GPIO 驱动属于 Linux Driver 中较为容易上手的部分,但是简单归简单,在 Linux 系统中,要使用 GPIO 资源…

高级网络调试技巧:使用Charles Proxy捕获和修改HTTP/HTTPS请求

今天我将与大家分享一种强大的网络调试技巧,那就是使用Charles Proxy来捕获和修改HTTP/HTTPS请求。如果您是一位开发人员或者网络调试爱好者,那么这个工具肯定对您有着很大的帮助。接下来,让我们一起来学习如何使用Charles Proxy进行高级网络…

区块链加密虚拟货币交易平台安全解决方案

区块链机密货币交易锁遭入侵,安全存在隐患。使用泰雷兹Protect server HSM加密机,多方位保护您的数据,并通过集中化管理,安全的存储密钥。 引文部分: 损失7000万美元!黑客入侵香港区块链加密货币交易所 2023年9月&…

计算机毕业设计选什么题目好?springboot 健身房管理系统

✍✍计算机编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java实战 |…

github创建个人网页登录后404无法显示的问题

1.首先必须要有内容,默认是会找index.html文件,找不到该文件会找readme.md文件,也就是说最简单的方法是,创建了与用户名同名的repository后username.github.io后,添加一个readme.md文件,得在readme里打点字…

十四、【图章工具组】

文章目录 仿制图章图案图章 仿制图章 纺织图和章工具跟我们之前所用到的修补工具类似,需要我们先按住Alt键选住一块区域,然后调整它的硬度在用我们选择的区域去覆盖,需要注意的是,我们去做的时候尽量一笔覆盖我们想要遮住的区域: 图案图章…

Blender:对模型着色

Blender:使用立方体制作动漫头像-CSDN博客 上一步已经做了一个头像模型,我做的太丑了,就以这个外星人头像为例 首先切换到着色器编辑器 依次搜索:纹理坐标、映射、分离xyz和颜色渐变 这里的功能也是非常丰富和强大&#xff0c…

RFID拓展的相关问答

基于: Research Reading: Smart Parking Applications Using RFID Technology-CSDN博客这篇文章总结了无线射频识别(RFID)技术在自动化中的应用及其在停车场管理系统中的解决方案。文章提到,RFID技术在自动化中可以降低交易成本&…

Macos音乐制作:Ableton Live 11 Suite for Mac中文版

Ableton Live 11是一款数字音频工作站软件,用于音乐制作、录音、混音和现场演出。它由Ableton公司开发,是一款极其流行的音乐制作软件之一。 以下是Ableton Live 11的一些主要特点和功能: Comping功能:Live 11增加了Comping功能…

Python接口自动化-requests模块之post请求

一、源码解析 def post(url, dataNone, jsonNone, **kwargs):r"""Sends a POST request.:param url: URL for the new :class:Request object.:param data: (optional) Dictionary, list of tuples, bytes, or file-likeobject to send in the body of the :cl…

软件项目管理实践指南:有效规划、执行和控制

软件项目管理是使软件产品、应用程序和系统成功交付的重要规程。它有助于确保软件在预算内按时开发,同时满足客户的质量和功能需求。 软件项目管理是管理软件项目生命周期的一种有组织的方法,包括计划、开发、发布、维护和支持。它是在满足客户需求的同时…

RocketMQ为什么要保证订阅关系一致

这篇文章,笔者想聊聊 RocketMQ 最佳实践之一:保证订阅关系一致。 订阅关系一致指的是同一个消费者 Group ID 下所有 Consumer 实例所订阅的 Topic 、Tag 必须完全一致。 如果订阅关系不一致,消息消费的逻辑就会混乱,甚至导致消息丢…

EMNLP 2023 录用论文公布,速看NLP各领域最新SOTA方案

EMNLP 2023 近日公布了录用论文。 开始前以防有同学不了解这个会议,先简单介绍介绍:EMNLP 是NLP 四大顶会之一,ACL大家应该都很熟吧,EMNLP就是由 ACL 下属的SIGDAT小组主办的NLP领域顶级国际会议,一年举办一次。相较于…

C++11新特性(lambda,可变参数模板,包装器,bind)

lambda表达式是什么?包装器又是什么?有什么作用?莫急,此篇文章将详细带你探讨它们的作用。很多同学在学习时害怕这些东西,其实都是方便使用的工具,很多情况下我们学这些新的东西觉得麻烦,累赘&a…

uni-app开发微信小程序的报错[渲染层错误]排查及解决

一、报错信息 [渲染层错误] Framework nner error (expect FLOW INITIALCREATION end but get FLOW CREATE-NODE) 二、原因分析及解决方案 第一种 原因:基础库版本的原因导致的。 解决: 1.修改调试基础库版本 2.详情—>本地设置—>调试基础库…

扎根嵌入式行业需要什么学历文凭?

在嵌入式行业,学历并不是唯一关键。我本人拥有电子工程学士学位,但嵌入式行业更看重实际技能和经验。视频后方有免费的嵌入式学习资料,入门和进阶内容都涵盖其中。嵌入式行业一般接纳各种学历,从专科到本科到研究生,甚…

CentOS 安装MySQL 详细教程

参考:https://www.cnblogs.com/dotnetcrazy/p/10871352.html 参考:https://www.cnblogs.com/qiujz/p/13390811.html 参考:https://blog.csdn.net/darry1990/article/details/130419433 一、安装 一、进入安装目录 将账户切换到root账户下,进入local目录下 cd /usr…

通过商品ID获取淘宝天猫商品评论数据,淘宝商品评论接口,淘宝商品评论api接口

淘宝商品评论内容数据接口可以通过以下步骤获取: 登录淘宝开放平台,进入API管理控制台。在API管理控制台中创建一个应用,获取到应用的App Key和Secret Key。构造请求URL,请求URL由App Key和Secret Key拼接而成,请求UR…

VUE3页面截取部署后的二级目录地址

用vue3开发了一个项目,只能部署在根目录,不能加二级目录,后来网上找了解决方案,在vite.config.ts中增加base: ./,配置解决问题,参考下图: 但部署后要获取部署的二级目录地址切遇到问题,后来想了…

数字化教育的未来:数字孪生技术助力校园创新

随着科技的飞速发展,智慧校园成为教育领域的新宠。数字孪生技术,作为一项新兴技术,正日益深刻地影响着校园的运营和管理。它为学校提供了前所未有的工具和资源,使校园管理更加高效、智能化。本文将探讨数字孪生技术如何助力智慧校…