竞赛 深度学习 机器视觉 车位识别车道线检测 - python opencv

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习 机器视觉 车位识别车道线检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

简介

你是不是经常在停车场周围转来转去寻找停车位。如果你的车辆能准确地告诉你最近的停车位在哪里,那是不是很爽?事实证明,基于深度学习和OpenCV解决这个问题相对容易,只需获取停车场的实时视频即可。

检测效果

废话不多说, 先上效果图
在这里插入图片描述
在这里插入图片描述
注意车辆移动后空车位被标记上
在这里插入图片描述
在这里插入图片描述

车辆移动到其他车位

在这里插入图片描述

实现方式
整体思路

这个流程的第一步就是检测一帧视频中所有可能的停车位。显然,在我们能够检测哪个是没有被占用的停车位之前,我们需要知道图像中的哪些部分是停车位。

第二步就是检测每帧视频中的所有车辆。这样我们可以逐帧跟踪每辆车的运动。

第三步就是确定哪些车位目前是被占用的,哪些没有。这需要结合前两步的结果。

最后一步就是出现新车位时通知我。这需要基于视频中两帧之间车辆位置的变化。

这里的每一步,我们都可以使用多种技术用很多种方式实现。构建这个流程并没有唯一正确或者错误的方式,但不同的方法会有优劣之分。

使用要使用到两个视觉识别技术 :识别空车位停车线,识别车辆
检测空车位

车位探测系统的第一步是识别停车位。有一些技巧可以做到这一点。例如,通过在一个地点定位停车线来识别停车位。这可以使用OpenCV提供的边缘检测器来完成。但是如果没有停车线呢?

我们可以使用的另一种方法是假设长时间不移动的汽车停在停车位上。换句话说,有效的停车位就是那些停着不动的车的地方。但是,这似乎也不可靠。它可能会导致假阳性和真阴性。

那么,当自动化系统看起来不可靠时,我们应该怎么做呢?我们可以手动操作。与基于空间的方法需要对每个不同的停车位进行标签和训练不同,我们只需标记一次停车场边界和周围道路区域即可为新的停车位配置我们的系统。

在这里,我们将从停车位的视频流中截取一帧,并标记停车区域。Python库matplotlib
提供了称为PolygonSelector的功能。它提供了选择多边形区域的功能。

我制作了一个简单的python脚本来标记输入视频的初始帧之一上的多边形区域。它以视频路径作为参数,并将选定多边形区域的坐标保存在pickle文件中作为输出。

在这里插入图片描述

import os
import numpy as np
import cv2
import pickle
import argparse
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
from matplotlib.widgets import PolygonSelector
from matplotlib.collections import PatchCollection
from shapely.geometry import box
from shapely.geometry import Polygon as shapely_polypoints = []
prev_points = []
patches = []
total_points = []
breaker = Falseclass SelectFromCollection(object):def __init__(self, ax):self.canvas = ax.figure.canvasself.poly = PolygonSelector(ax, self.onselect)self.ind = []def onselect(self, verts):global pointspoints = vertsself.canvas.draw_idle()def disconnect(self):self.poly.disconnect_events()self.canvas.draw_idle()def break_loop(event):global breakerglobal globSelectglobal savePathif event.key == 'b':globSelect.disconnect()if os.path.exists(savePath):os.remove(savePath)print("data saved in "+ savePath + " file") with open(savePath, 'wb') as f:pickle.dump(total_points, f, protocol=pickle.HIGHEST_PROTOCOL)exit()def onkeypress(event):global points, prev_points, total_pointsif event.key == 'n': pts = np.array(points, dtype=np.int32) if points != prev_points and len(set(points)) == 4:print("Points : "+str(pts))patches.append(Polygon(pts))total_points.append(pts)prev_points = pointsif __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('video_path', help="Path of video file")parser.add_argument('--out_file', help="Name of the output file", default="regions.p")args = parser.parse_args()global globSelectglobal savePathsavePath = args.out_file if args.out_file.endswith(".p") else args.out_file+".p"print("\n> Select a region in the figure by enclosing them within a quadrilateral.")print("> Press the 'f' key to go full screen.")print("> Press the 'esc' key to discard current quadrilateral.")print("> Try holding the 'shift' key to move all of the vertices.")print("> Try holding the 'ctrl' key to move a single vertex.")print("> After marking a quadrilateral press 'n' to save current quadrilateral and then press 'q' to start marking a new quadrilateral")print("> When you are done press 'b' to Exit the program\n")video_capture = cv2.VideoCapture(args.video_path)cnt=0rgb_image = Nonewhile video_capture.isOpened():success, frame = video_capture.read()if not success:breakif cnt == 5:rgb_image = frame[:, :, ::-1]cnt += 1video_capture.release()while True:fig, ax = plt.subplots()image = rgb_imageax.imshow(image)p = PatchCollection(patches, alpha=0.7)p.set_array(10*np.ones(len(patches)))ax.add_collection(p)globSelect = SelectFromCollection(ax)bbox = plt.connect('key_press_event', onkeypress)break_event = plt.connect('key_press_event', break_loop)plt.show()globSelect.disconnect()
车辆识别

要检测视频中的汽车,我使用Mask-
RCNN。它是一个卷积神经网络,对来自几个数据集(包括COCO数据集)的数百万个图像和视频进行了训练,以检测各种对象及其边界。 Mask-
RCNN建立在Faster-RCNN对象检测模型的基础上。

除了每个检测到的对象的类标签和边界框坐标外,Mask RCNN还将返回图像中每个检测到的对象的像pixel-wise mask。这种pixel-wise
masking称为“ 实例分割”。我们在计算机视觉领域所看到的一些最新进展,包括自动驾驶汽车、机器人等,都是由实例分割技术推动的。

M-RCNN将用于视频的每一帧,它将返回一个字典,其中包含边界框坐标、检测对象的masks、每个预测的置信度和检测对象的class_id。现在使用class_ids过滤掉汽车,卡车和公共汽车的边界框。然后,我们将在下一步中使用这些框来计算IoU。

由于Mask-RCNN比较复杂,这里篇幅有限,需要mask-RCNN的同学联系博主获取, 下面仅展示效果:

在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/103434.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

golang 獲取 prometheus數據

使用github上的一個庫 1.安裝庫 go get github.com/prometheus/client_golang 2.導入 在import中導入,記得要在go.mod中更新一下 ------------------------------------------------------------------------------------ Address: "http://xx.xx.xx:9090…

基于IDEA集成环境---Nacos安装

Nacos服务器是独立安装部署的,因此我们需要下载最新的Nacos服务端程序,下载地址:https://github.com/alibaba/nacos。 将文件进行解压,得到以下内容: 直接将其拖入到项目文件夹下,便于我们一会在IDEA内部…

SAP router的问题 dev_out 大文件 ,bat 关闭服务,删除文件,重启服务

跟老师确认后,dev_out可以删除 具体时先把sap-router停掉,删除dev_out 重启服务 问题: 1、问题是saprouter 不能停止,停止的话 外网都要用VPN,那就避开高峰时间 可以后半夜搞这个事情 2、如何定时执行 &#xff…

格式转换 ▏Python 实现Word转HTML

将Word转换为HTML能将文档内容发布在网页上,这样,用户就可以通过浏览器直接查看或阅读文档而无需安装特定的软件。Word转HTML对于在线发布信息、创建在线文档库以及构建交互式网页应用程序都非常有用。以下是用Python将Word转换为HTML网页的攻略&#xf…

Vue封装组件并发布到npm仓库

前言 使用Vue框架进行开发,组件封装是一个很常规的操作。一个封装好的组件可以在项目的任意地方使用,甚至我们可以直接从npm仓库下载别人封装好的组件来进行使用,比如iview、element-ui这一类的组件库。但是每个公司的业务场景可能不同&…

使用css 与 js 两种方式实现导航栏吸顶效果

position的属性我们一般认为有 position:absolute postion: relative position:static position:fixed position:inherit; position:initial; position:unset; 但是我最近发现了一个定位position:sticky 这个可以称为粘性定位。 这个粘性定位的元素会始终在那个位置 <st…

【网络编程】Linux网络编程基础与实战第一弹——网络基础

这里写目录标题 网络基础什么是协议典型协议 分层模型OSI七层模型TCP/IP四层模型 网络应用程序设计模式优缺点具体体现&#xff1a; 网络基础 什么是协议 从应用的角度出发&#xff0c;协议可理解为“一组规则”&#xff0c;是数据传输和数据的解释的规则。 假设&#xff0c;…

UE4和C++ 开发-C++与UMG的交互2(C++获取UMG的属性)

1、...C获取UMG的属性 1.1、第一种方法&#xff1a;通过名称获取控件。 void UMyUserWidget::NativeConstruct() {Super::NativeConstruct();//通过名字&#xff0c;获取蓝图控件中的按钮引用。CtnClic Cast<UButton>(GetWidgetFromName(TEXT("Button_44"))…

【【萌新的SOC学习之基于BRAM的PS和PL数据交互实验】】

萌新的SOC学习之基于BRAM的PS和PL数据交互实验 基于BRAM的PS和PL的数据交互实验 先介绍 AXI BRAM IP核控制器的简介 AXI BRAM ip核 是xilinx提供的一个软核 这个ip核被设计成 AXI的一个从机接口 用于AXI互联的集成 系统的主设备和本地的RAM进行通信 &#xff08;我们可以通过这…

JS截取url上面的参数

手动截取封装 function getUrlParams(url location.href) {let urlStr url.split(?)[1] || let obj {};let paramsArr urlStr.split(&)for (let i 0, len paramsArr.length; i < len; i) {const num paramsArr[i].indexOf()let arr [paramsArr[i].substring(0,…

Docker快速上手:使用Docker部署Drupal并实现公网访问

文章目录 前言1. Docker安装Drupal2. 本地局域网访问3 . Linux 安装cpolar4. 配置Drupal公网访问地址5. 公网远程访问Drupal6. 固定Drupal 公网地址 前言 Dupal是一个强大的CMS&#xff0c;适用于各种不同的网站项目&#xff0c;从小型个人博客到大型企业级门户网站。它的学习…

离散型制造企业MES管理系统解决方案

随着制造业的快速发展&#xff0c;离散型制造企业面临着越来越多的挑战。多样性、生产批次、工序复杂性以及高度定制化等特点使得企业的生产管理变得越来越复杂。为了提高生产效率和管理效率&#xff0c;许多企业开始寻求合适的解决方案。本文将以离散型制造企业的特点为基础&a…

铁道交通运输运营3D模拟仿真实操提供一个沉浸、高效且环保的情境

VR模拟果蔬运输应急处理场景在农产品物流行业中具有重要的意义。这种模拟技术为农产品运输提供了全新的、更高效和更安全的方式来模拟真实世界的应急情况&#xff0c;帮助操作人员、研究者和管理者更好地理解和应对可能的运输风险措施。 VR模拟果蔬运输应急处理场景可以模拟出各…

Python操作Hive数据仓库

Python连接Hive 1、Python如何连接Hive&#xff1f;2、Python连接Hive数据仓库 1、Python如何连接Hive&#xff1f; Python连接Hive需要使用Impala查询引擎 由于Hadoop集群节点间使用RPC通信&#xff0c;所以需要配置Thrift依赖环境 Thrift是一个轻量级、跨语言的RPC框架&…

嵌入式C语言自我修养《内存堆栈管理》学习笔记

目录 一、Linux环境下的内存管理 二、栈的管理 三、堆内存管理 四、mmap映射区 五、内存泄漏与防范 六、常见的内存错误及检测 C程序中定义的函数、全局变量、静态变量经过编译链接后&#xff0c;分别以section的形式存储在可执行文件的代码段、数据段和BSS段中。当程序运…

【mysql】 bash: mysql: command not found

在linux 服务器上安装了mysql 也可以正常运行。 但是执行命令&#xff0c;系统提示&#xff1a;bash: mysql: command not found bash:mysql:找不到命令 执行的命令是&#xff1a; mysql -u root -h 127.0.0.1 -p由于系统默认会查找的 /usr/bin/ 中下的命令&#xff0c;如…

Ant Design Form.List基础用法

使用 Form.List 使用 项目中需要在新增可以多个如图 代码如下 // An highlighted block <Card title"产品信息" bordered{false}><Form.List name"productList" >{(fields, {add, remove}) > (<>{fields.map((field) > (<Ro…

XPath在数据采集中的应用:从XML和HTML中提取数据

目录 一、XPath简介 二、XPath的语法 三、XPath在数据采集中的应用 四、XPath和其他数据格式 总结 在当今的数据驱动时代&#xff0c;从各种数据源中提取有用的信息变得至关重要。其中&#xff0c;XML和HTML作为主流的数据源格式&#xff0c;常常出现在我们的数据提取任务…

电气设备漏电保护方式研究

安科瑞 崔丽洁 摘要&#xff1a;电气设备漏电故障可能对无防范意识人员产生触电危害&#xff0c;轻者灼伤人体接触位置&#xff0c;重者危及人员生命&#xff0c;甚至会产生漏电火花引起火灾&#xff0c;给企业带来不可估计的损失。文中浅谈电气设备漏电危害性及漏电保护方式&…

java模拟GPT流式问答

流式请求gpt并且流式推送相关前端页面 1&#xff09;java流式获取gpt答案 1、读取文件流的方式 使用post请求数据&#xff0c;由于gpt是eventsource的方式返回数据&#xff0c;所以格式是data&#xff1a;&#xff0c;需要手动替换一下值 /** org.apache.http.client.metho…