Kafka 简介之(学习之路)

正文

一、简介

1.1 概述

Kafka是最初由Linkedin公司开发,是一个分布式、分区的、多副本的、多订阅者,基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常见可以用于web/nginx日志、访问日志,消息服务等等,Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目。

主要应用场景是:日志收集系统和消息系统。

Kafka主要设计目标如下:

  • 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能。
  • 高吞吐率。即使在非常廉价的商用机器上也能做到单机支持每秒100K条消息的传输。
  • 支持Kafka Server间的消息分区,及分布式消费,同时保证每个partition内的消息顺序传输。
  • 同时支持离线数据处理和实时数据处理。
  • Scale out:支持在线水平扩展

1.2 消息系统介绍

一个消息系统负责将数据从一个应用传递到另外一个应用,应用只需关注于数据,无需关注数据在两个或多个应用间是如何传递的。分布式消息传递基于可靠的消息队列,在客户端应用和消息系统之间异步传递消息。有两种主要的消息传递模式:点对点传递模式、发布-订阅模式。大部分的消息系统选用发布-订阅模式。Kafka就是一种发布-订阅模式

1.3 点对点消息传递模式

在点对点消息系统中,消息持久化到一个队列中。此时,将有一个或多个消费者消费队列中的数据。但是一条消息只能被消费一次。当一个消费者消费了队列中的某条数据之后,该条数据则从消息队列中删除。该模式即使有多个消费者同时消费数据,也能保证数据处理的顺序。这种架构描述示意图如下:

生产者发送一条消息到queue,只有一个消费者能收到

1.4 发布-订阅消息传递模式

在发布-订阅消息系统中,消息被持久化到一个topic中。与点对点消息系统不同的是,消费者可以订阅一个或多个topic,消费者可以消费该topic中所有的数据,同一条数据可以被多个消费者消费,数据被消费后不会立马删除。在发布-订阅消息系统中,消息的生产者称为发布者,消费者称为订阅者。该模式的示例图如下:

发布者发送到topic的消息,只有订阅了topic的订阅者才会收到消息

二、Kafka的优点

2.1 解耦

在项目启动之初来预测将来项目会碰到什么需求,是极其困难的。消息系统在处理过程中间插入了一个隐含的、基于数据的接口层,两边的处理过程都要实现这一接口。这允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

2.2 冗余(副本)

有些情况下,处理数据的过程会失败。除非数据被持久化,否则将造成丢失。消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的"插入-获取-删除"范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。

2.3 扩展性

因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。不需要改变代码、不需要调节参数。扩展就像调大电力按钮一样简单。

2.4 灵活性&峰值处理能力

在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见;如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

2.5 可恢复性

系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。

2.6 顺序保证

在大多使用场景下,数据处理的顺序都很重要。大部分消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。Kafka保证一个Partition内的消息的有序性。

2.7 缓冲

在任何重要的系统中,都会有需要不同的处理时间的元素。例如,加载一张图片比应用过滤器花费更少的时间。消息队列通过一个缓冲层来帮助任务最高效率的执行———写入队列的处理会尽可能的快速。该缓冲有助于控制和优化数据流经过系统的速度。

2.8 异步通信

很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

三、常用Message Queue对比

3.1 RabbitMQ

RabbitMQ是使用Erlang编写的一个开源的消息队列,本身支持很多的协议:AMQP,XMPP, SMTP, STOMP,也正因如此,它非常重量级,更适合于企业级的开发。同时实现了Broker构架,这意味着消息在发送给客户端时先在中心队列排队。对路由,负载均衡或者数据持久化都有很好的支持。

3.2 Redis

Redis是一个基于Key-Value对的NoSQL数据库,开发维护很活跃。虽然它是一个Key-Value数据库存储系统,但它本身支持MQ功能,所以完全可以当做一个轻量级的队列服务来使用。对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。测试数据分为128Bytes、512Bytes、1K和10K四个不同大小的数据。实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如果数据大小超过了10K,Redis则慢的无法忍受;出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于Redis。

3.3 ZeroMQ

ZeroMQ号称最快的消息队列系统,尤其针对大吞吐量的需求场景。ZeroMQ能够实现RabbitMQ不擅长的高级/复杂的队列,但是开发人员需要自己组合多种技术框架,技术上的复杂度是对这MQ能够应用成功的挑战。ZeroMQ具有一个独特的非中间件的模式,你不需要安装和运行一个消息服务器或中间件,因为你的应用程序将扮演这个服务器角色。你只需要简单的引用ZeroMQ程序库,可以使用NuGet安装,然后你就可以愉快的在应用程序之间发送消息了。但是ZeroMQ仅提供非持久性的队列,也就是说如果宕机,数据将会丢失。其中,Twitter的Storm 0.9.0以前的版本中默认使用ZeroMQ作为数据流的传输(Storm从0.9版本开始同时支持ZeroMQ和Netty作为传输模块)。

3.4 ActiveMQ

ActiveMQ是Apache下的一个子项目。 类似于ZeroMQ,它能够以代理人和点对点的技术实现队列。同时类似于RabbitMQ,它少量代码就可以高效地实现高级应用场景。

3.5 Kafka/Jafka

Kafka是Apache下的一个子项目,是一个高性能跨语言分布式发布/订阅消息队列系统,而Jafka是在Kafka之上孵化而来的,即Kafka的一个升级版。具有以下特性:快速持久化,可以在O(1)的系统开销下进行消息持久化;高吞吐,在一台普通的服务器上既可以达到10W/s的吞吐速率;完全的分布式系统,Broker、Producer、Consumer都原生自动支持分布式,自动实现负载均衡;支持Hadoop数据并行加载,对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka通过Hadoop的并行加载机制统一了在线和离线的消息处理。Apache Kafka相对于ActiveMQ是一个非常轻量级的消息系统,除了性能非常好之外,还是一个工作良好的分布式系统。

四、Kafka中的术语解释

4.1 概述

在深入理解Kafka之前,先介绍一下Kafka中的术语。下图展示了Kafka的相关术语以及之间的关系:

上图中一个topic配置了3个partition。Partition1有两个offset:0和1。Partition2有4个offset。Partition3有1个offset。副本的id和副本所在的机器的id恰好相同。

如果一个topic的副本数为3,那么Kafka将在集群中为每个partition创建3个相同的副本。集群中的每个broker存储一个或多个partition。多个producer和consumer可同时生产和消费数据。

4.2 broker

Kafka 集群包含一个或多个服务器,服务器节点称为broker。

broker存储topic的数据。如果某topic有N个partition,集群有N个broker,那么每个broker存储该topic的一个partition。

如果某topic有N个partition,集群有(N+M)个broker,那么其中有N个broker存储该topic的一个partition,剩下的M个broker不存储该topic的partition数据。

如果某topic有N个partition,集群中broker数目少于N个,那么一个broker存储该topic的一个或多个partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致Kafka集群数据不均衡。

4.3 Topic

每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)

类似于数据库的表名

4.4 Partition

topic中的数据分割为一个或多个partition。每个topic至少有一个partition。每个partition中的数据使用多个segment文件存储。partition中的数据是有序的,不同partition间的数据丢失了数据的顺序。如果topic有多个partition,消费数据时就不能保证数据的顺序。在需要严格保证消息的消费顺序的场景下,需要将partition数目设为1。

4.5 Producer

生产者即数据的发布者,该角色将消息发布到Kafka的topic中。broker接收到生产者发送的消息后,broker将该消息追加到当前用于追加数据的segment文件中。生产者发送的消息,存储到一个partition中,生产者也可以指定数据存储的partition。

4.6 Consumer

消费者可以从broker中读取数据。消费者可以消费多个topic中的数据。

4.7 Consumer Group

每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。

4.8 Leader

每个partition有多个副本,其中有且仅有一个作为Leader,Leader是当前负责数据的读写的partition。

4.9 Follower

Follower跟随Leader,所有写请求都通过Leader路由,数据变更会广播给所有Follower,Follower与Leader保持数据同步。如果Leader失效,则从Follower中选举出一个新的Leader。当Follower与Leader挂掉、卡住或者同步太慢,leader会把这个follower从“in sync replicas”(ISR)列表中删除,重新创建一个Follower。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/100209.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

原生JS-鼠标拖动

原生JS-鼠标拖动 通过鼠标的点击事件通过h5的属性 通过鼠标的点击事件 步骤: 1. 鼠标按下div。 2. 鼠标移动,div跟着移动 原生js,实现拖拽效果。1. 给被拖拽的div加上 onmousedown 鼠标【按下事件】。鼠标按下的时候,开始监听鼠标…

【Spring框架学习3】Spring Bean的作用域 及 生命周期

一、Spring Bean的作用域有哪些? Spring框架支持以下五种Bean的作用域: Singleton:这是默认的作用域,在每个Spring IoC容器中只有一个Bean的实例(IoC初始化后)。Spring 中的 bean 默认都是单例的,是对单例设计模式的…

cesium图标漂移分析与解决

漂移现象如下 什么是图标漂移? 随着视野改变,图标相对于地面发生了相对位置的变化 让人感觉到图标有飘忽不定的感觉 原因分析 图标是静止的,它的位置在世界坐标系中是绝对的、静止的。 漂移大部分的原因是: 透视关系发生了错…

新华三辅导笔记 2023/10/9-2023/10/13

新华三辅导笔记 一、需要用到的软件二、计算机网络概述1、计算机网络的定义和基本功能(1)什么是计算机网络(2)计算机网络的基本功能 2、(1)局域网、城域网和广域网(范围划分)&#x…

OpenCV防抖实践及代码解析笔记

视频防抖是指用于减少摄像机运动对最终视频的影响的一系列方法。摄像机的运动可以是平移(比如沿着x、y、z方向上的运动)或旋转(偏航、俯仰、翻滚)。 正如你在上面的图片中看到的,在欧几里得运动模型中,图像…

leetcode:190. 颠倒二进制位

一、题目: 函数原型: uint32_t reverseBits(uint32_t n) 解释:uint32是无符号int或short的别称,传入的参数是一个32位二进制串,返回值是该32位二进制串逆序后的十进制值 二、思路: 实际上并不需要真的去逆…

移动应用-Android-开发指南

Android-UI开发指南 Android Studio调试UI设计UI框架布局Layout文本框 android的活动Activity基本概念Activity的生命周期Activity栈创建Activity管理ActivityActivity间传递数据 FragmentAdapterRecyclerViewRecyclerView Adapter(适配器)事件setOnItem…

Can 通信-协议

概述 CAN 是 Controller Area Network 的缩写(以下称为 CAN),是 ISO国际标准化的串行通信协议。 在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统 被开发了出来。由于…

uniapp快速入门系列(3)- CSS技巧与布局

章节三:CSS技巧与布局 1. uniapp中的样式编写2. 常见布局技巧与实例解析2.1 水平居中布局2.2 垂直居中布局2.3 等高布局2.4 响应式布局 3. CSS动画与过渡效果 在uniapp中,我们使用CSS来设置页面的样式和布局。本章将介绍一些在uniapp中常用的CSS技巧和布…

IDEA的使用(一)代码模块的导入、快捷使用、自定义 (IntelliJ IDEA 2022.1.3版本)

目录 1. IDEA项目结构 2. 模块的导入操作 2.1 正规操作 2.2 取巧操作 2.3 出现乱码 2.4 模块改名 3. 代码模板的使用 后缀补全(Postfix Completion)、实时模板(Live Templates)菜单里面什么介绍都有,可以自学&a…

4.02 用户中心-上传头像功能开发

详细内容请看下面地址: 地址:http://www.gxcode.top/code

林沛满-TCP 是如何避免被发送方分片的?

TCP 可以避免被发送方分片,是因为它主动把数据分成小段再交给网络层。最大的分段大小称为 MSS(Maximum Segment Size),它相当于把 MTU 刨去 IP头和 TCP 头之后的大小,所以一个 MSS 恰好能装进一个 MTU 中。 图4 图 4 …

唐老师讲电赛

dc-dc电源布局要点

存档&改造【04】二维码操作入口设置细节自动刷新设置后的交互式网格内容的隐藏

因为数据库中没有数据无法查看设置效果,于是自己创建了个测试数据表,用来给demo测试 -- 二维码操作入口设置 create table JM_QR_CODE(QR_CODE_ID NUMBER generated as identity primary key,SYSTEM_ID NUMBER(20) not null,IS_ENAB…

iceberg简介004_iceberg和其他数据湖框架的对比---​​数据湖Apache Iceberg工作笔记0004

然后来看一下iceberg和其他数据湖框架的对比这里可以看到hudi支持的多一点对吧,但是 iceberg有自己的优势,并且他们都支持timeline 也就是时间旅行对吧. 然后这个图是显示了,数据湖三剑客的开源时间,以及火热程度,可以对比一下看看.

R语言R包详解——stringr包:字符处理

R语言 R语言R包详解——stringr包:字符处理 一切用法皆以说明书为准,想要了解该包,请多查阅说明书或者查看底层算法。 文章目录 R语言一、安装与加载R包二、函数简介三、函数详解3.1、str_c: 字符串拼接3.2、str_trim: 去掉字符串的空格和TA…

win1011安装MG-SOFT+MIB+Browser+v10b

文章目录 安装MG-SOFTSNMP服务配置安装MG-SOFT启动MIB-Browser以及错误解决MIB Browser使用 安装MG-SOFT win10和win11安装基本一样,所以参照下面的操作即可! SNMP服务配置 打开设置,应用和功能,可选功能,选择添加功…

java项目中git的.ignore文件设置

在Git中,ignore是用来指定Git应该忽略的故意不被追踪的文件。它并不影响已经被Git追踪的文件。我们可以通过.ignore文件在Git中指定要忽略的文件。 当我们执行git add命令时,Git会检查.gitignore文件,并自动忽略这些文件和目录。这样可以避免…

归纳所猜半结论推出完整结论:CF1592F1

https://www.luogu.com.cn/problem/CF1592F1 场上猜了个结论,感觉只会操作1。然后被样例1hack了。然后就猜如果 ( n , m ) (n,m) (n,m) 为1则翻转4操作,被#14hack了。然后就猜4操作只会进行一次,然后就不知道怎么做下去了。 上面猜的结论都…