文章目录
- 题目解析
- 方法一:滑动窗口
- 解法二(暴⼒求解)(不会超时,可以通过):
- 附Java代码
力扣题目:无重复字符的最长子串
题目解析
方法一:滑动窗口
思路和算法
我们先用一个例子考虑如何在较优的时间复杂度内通过本题。
我们不妨以示例一中的字符串 abcabcbb 为例,找出从每一个字符开始的,不包含重复字符的最长子串,那么其中最长的那个字符串即为答案。对于示例一中的字符串,我们列举出这些结果,其中括号中表示选中的字符以及最长的字符串:
以 (a)bcabcbb 开始的最长字符串为 (abc)abcbb;
以 a(b)cabcbb 开始的最长字符串为 a(bca)bcbb;
以 ab©abcbb 开始的最长字符串为 ab(cab)cbb;
以 abc(a)bcbb 开始的最长字符串为 abc(abc)bb;
以 abca(b)cbb 开始的最长字符串为 abca(bc)bb;
以 abcab©bb 开始的最长字符串为 abcab(cb)b;
以 abcabc(b)b 开始的最长字符串为 abcabc(b)b;
以 abcabcb(b) 开始的最长字符串为 abcabcb(b)。
发现了什么?如果我们依次递增地枚举子串的起始位置,那么子串的结束位置也是递增的!这里的原因在于,假设我们选择字符串中的第 k 个字符作为起始位置,并且得到了不包含重复字符的最长子串的结束位置为 r
k
。那么当我们选择第 k+1 个字符作为起始位置时,首先从 k+1 到 r
k
的字符显然是不重复的,并且由于少了原本的第 k 个字符,我们可以尝试继续增大 r
k
,直到右侧出现了重复字符为止。
这样一来,我们就可以使用「滑动窗口」来解决这个问题了
我们使用两个指针表示字符串中的某个子串(或窗口)的左右边界,其中左指针代表着上文中「枚举子串的起始位置」,而右指针即为上文中的 r
k
在每一步的操作中,我们会将左指针向右移动一格,表示 我们开始枚举下一个字符作为起始位置,然后我们可以不断地向右移动右指针,但需要保证这两个指针对应的子串中没有重复的字符。在移动结束后,这个子串就对应着 以左指针开始的,不包含重复字符的最长子串。我们记录下这个子串的长度;
在枚举结束后,我们找到的最长的子串的长度即为答案。
判断重复字符
在上面的流程中,我们还需要使用一种数据结构来判断 是否有重复的字符,常用的数据结构为哈希集合(即 C++ 中的 std::unordered_set,Java 中的 HashSet,Python 中的 set, JavaScript 中的 Set)。在左指针向右移动的时候,我们从哈希集合中移除一个字符,在右指针向右移动的时候,我们往哈希集合中添加一个字符。
至此,我们就完美解决了本题。
class Solution {
public:int lengthOfLongestSubstring(string s) {// 哈希集合,记录每个字符是否出现过unordered_set<char> occ;int n = s.size();// 右指针,初始值为 -1,相当于我们在字符串的左边界的左侧,还没有开始移动int rk = -1, ans = 0;// 枚举左指针的位置,初始值隐性地表示为 -1for (int i = 0; i < n; ++i) {if (i != 0) {// 左指针向右移动一格,移除一个字符occ.erase(s[i - 1]);}while (rk + 1 < n && !occ.count(s[rk + 1])) {// 不断地移动右指针occ.insert(s[rk + 1]);++rk;}// 第 i 到 rk 个字符是一个极长的无重复字符子串ans = max(ans, rk - i + 1);}return ans;}
};
解法二(暴⼒求解)(不会超时,可以通过):
class Solution {public:int lengthOfLongestSubstring(string s) {int ret = 0;
int n = s.length();
for (int i = 0; i < n; i++){int hash[128] = { 0 };for (int j = i; j < n; j++){hash[s[j]]++; if (hash[s[j]] > 1) break; ret = max(ret, j - i + 1);}}return ret;}};
附Java代码
class Solution {public int lengthOfLongestSubstring(String s) {// 哈希集合,记录每个字符是否出现过Set<Character> occ = new HashSet<Character>();int n = s.length();// 右指针,初始值为 -1,相当于我们在字符串的左边界的左侧,还没有开始移动int rk = -1, ans = 0;for (int i = 0; i < n; ++i) {if (i != 0) {// 左指针向右移动一格,移除一个字符occ.remove(s.charAt(i - 1));}while (rk + 1 < n && !occ.contains(s.charAt(rk + 1))) {// 不断地移动右指针occ.add(s.charAt(rk + 1));++rk;}// 第 i 到 rk 个字符是一个极长的无重复字符子串ans = Math.max(ans, rk - i + 1);}return ans;}
}