生成一个好故事!StoryDiffusion:一致自注意力和语义运动预测器必不可少(南开字节)

文章链接:https://arxiv.org/pdf/2405.01434
主页:https://storydiffusion.github.io/

对于最近基于扩散的生成模型来说,在一系列生成的图像中保持一致的内容,尤其是那些包含主题和复杂细节的图像,是一个重大挑战。本文提出了一种新的自注意力计算方式,称为一致性自注意力,显著提升了生成图像与流行的预训练基于扩散的文本到图像模型之间的一致性,并以zero-shot方式增强

为了将本文的方法扩展到长视频生成,进一步引入了一种新颖的语义空间时间运动预测模块,称为语义运动预测器。它被训练用于估计语义空间中两个提供的图像之间的运动条件。该模块将生成的图像序列转换为具有平滑过渡和一致主题的视频,与仅基于潜在空间的模块相比,尤其是在长视频生成的情况下,稳定性显著提高。

通过将这两个新颖组件合并,该框架,被称为StoryDiffusion,可以用一致的图像或视频描述基于文本的故事,涵盖丰富多样的内容。所提出的StoryDiffusion在视觉故事生成方面进行了开创性的探索,呈现了图像和视频的展示,希望这能激发更多从架构修改的角度进行的研究。

一致性自注意力效果展示

StoryDiffusion生成的更多视频(原文可跳转)

介绍

最近,扩散模型发展迅速,并展示了在内容生成方面的非凡潜力,如图像,3D目标和视频。通过广泛的预训练和先进的架构,扩散模型在生成高质量图像和视频方面表现优于先前基于生成对抗网络(GAN)的方法。

然而,生成具有一致主题(例如,具有一致身份和服装的角色)的图像和视频来描述故事对现有模型仍然具有挑战性。常用的以图像为参考的IP-Adapter可以用于指导扩散过程以生成类似于它的图像。然而,由于强大的引导作用,对文本提示生成的内容的可控性降低了。

另一方面,最近的最先进的身份保持方法,如InstantID,侧重于身份的可控性,但无法保证服装和情景的一致性。因此,本文的目标是找到一种方法,能够生成具有一致性角色的图像和视频,无论是身份还是服装,同时最大限度地提高用户通过文本提示的可控性

保持不同图像之间(或在视频生成的情境下的帧之间)的一致性的一种常见方法是使用时间模块。然而,这需要大量的计算资源和数据。与此不同,本文的目标是探索一种轻量级方法,具有最小的数据和计算成本,甚至以zero-shot方式进行。

正如之前的研究所证明的,自注意力是建模生成视觉内容整体结构的最重要模块之一。本文的主要动机是,如果我们能够使用参考图像来指导自注意力的计算,那么两个图像之间的一致性应该会显著提高。由于自注意力权重是依赖于输入的,因此可能不需要模型训练或微调。遵循这个思路,本文提出了一致性自注意力,这是StoryDiffusion的核心,可以以zero-shot方式插入扩散骨干,取代原始的自注意力。

与标准的自注意力不同,后者是在表示单个图像的tokens上操作的(如下图2(d)所示),一致性自注意力在tokens相似性矩阵计算和tokens合并过程中包含了从参考图像中采样的参考tokens。采样的tokens共享相同的Q-K-V权重,因此不需要额外的训练。

如下图1所示,使用一致性自注意力生成的图像成功地保持了在身份和服装方面的一致性,这对于叙事非常重要。

直观地说,一致性自注意力在批处理中建立了图像之间的相关性,在身份和服装等方面生成了一致的角色图像。这使能够为叙事生成主题一致的图像。

对于给定的故事文本,首先将其分成几个提示,每个提示对应一个单独的图像。然后,本文的方法可以生成高度一致的图像,有效地叙述一个故事。为了支持长篇故事的生成,还沿着时间维度实现了一致性自注意力以及一个滑动窗口。这消除了峰值内存消耗与输入文本长度的依赖关系,从而使生成长篇故事成为可能。

为了将生成的故事帧流式传输成视频,进一步提出了语义运动预测器,它可以在语义空间中预测两个图像之间的过渡。经验性地发现,在语义空间中预测运动比在图像潜空间中的预测产生了更稳定的结果。结合预训练的运动模块,语义运动预测器可以生成平滑的视频帧,其质量显著优于最近的条件视频生成方法,如SEINE和SparseCtrl。

贡献总结如下:

  • 提出了一种无需训练且可即插即用的注意力模块,称为一致性自注意力。它可以保持生成图像序列中角色的一致性,从而实现高文本可控性的叙事。

  • 提出了一种新的运动预测模块,可以在语义空间中预测两个图像之间的过渡,称为语义运动预测器。它可以生成明显更稳定的长视频帧,比最近流行的图像条件方法(如SEINE和SparseCtrl)更容易扩展到分钟级。

  • 证明了本文的方法可以基于预定义的文本故事使用一致性自注意力和语义运动预测器生成长图像序列或视频,其中的运动由文本提示指定。新框架称为StoryDiffusion

相关工作

扩散模型

扩散模型迅速展示了其在生成逼真图像方面的惊人能力,这也使它们在最近几年主导了生成建模领域。通过利用深度去噪网络,扩散模型通过迭代添加噪声和去噪来建立噪声分布与真实图像分布之间的连接。早期的工作主要集中在无条件图像生成方面,奠定了扩散模型的理论基础。

随后,为提高扩散模型的效率和性能,进行了各种努力。典型例子包括高效采样方法、潜空间中的去噪、可控性。随着基础理论的探索,扩散模型逐渐受到欢迎,并在各个领域展示了强大的性能,如图像生成、视频生成、3D生成、图像分割和低级别视觉任务。

可控文本到图像生成

作为扩散模型应用的重要子领域,最近引起了人们的极大关注的文本到图像生成,代表作有潜空扩散、DiT和Stable XL。此外,为增强文本到图像生成的可控性,也出现了许多方法。其中,ControlNet和T2I-Adapter引入了控制条件,如深度图、姿态图像或素描,以指导图像的生成。MaskDiffusion和StructureDiffusion专注于增强文本的可控性。还有一些工作控制生成图像的布局。

ID保持是期望根据指定的ID生成图像的热门话题。根据是否需要测试时微调,这些工作可以分为两大类。第一类仅需要对给定图像的部分模型进行微调,例如Textual Inversion、DreamBooth和Custom Diffusion。另一类,例如IPAdapter和PhotoMaker,利用已在大型数据集上进行了预训练的模型,允许直接使用给定图像来控制图像生成。与这两种类型不同,我们专注于在多个图像中保持主题一致性,以叙述一个故事。一致性自注意力是无需训练且可插拔的,可以在批处理中建立图像之间的连接,生成多个主题一致的图像。

视频生成

由于扩散模型在图像生成领域的成功,视频生成领域的探索也变得流行起来。由于文本是用户可以指定的最直观的描述符,基于文本的视频生成受到了最多的关注。VDM是最早将2D U-Net从图像扩散模型扩展到3D U-Net以实现视频生成的方法之一。

由于视频生成的计算成本显著增加,后续的工作,如MagicVideo和Mindscope,引入了1D时间注意机制,通过基于潜空间扩散模型来降低计算量。在Imagen之后,Imagen Video采用了级联采样pipeline,通过多个阶段生成视频。Show-1也提出了一种多阶段方法,以平衡生成质量和效率。

除了传统的端到端文本到视频(T2V)生成外,使用其他条件进行视频生成也是一个重要的方向。这类方法使用其他辅助控制生成带有其他辅助控制的视频,例如深度图、姿态图、RGB图像或其他引导运动视频。与文本提示的歧义不同,引入这种条件信息增强了视频生成的可控性。

本文的视频生成方法专注于转换视频生成,预期生成具有给定起始帧和结束帧的视频。典型的相关工作包括SEINE和SparseCtrl。SEINE在训练中将视频序列随机mask作为视频扩散模型的初始输入,以使两个帧之间的过渡预测成为可能。SparseCtrl引入了稀疏控制网络,使用稀疏控制数据为每个帧合成相应的控制信息,从而指导视频的生成。

然而,前述的过渡视频生成方法仅依赖于图像潜空间中的时间网络进行中间内容的预测。因此,这些方法在复杂的过渡,如角色的大规模移动时通常表现不佳。StoryDiffusion旨在在图像语义空间中进行预测以获得更好的性能,并且可以处理更大的移动,将在实验部分展示。

方法

本文的方法可以分为两个阶段,如前面图2和下图3所示。在第一阶段中,StoryDiffusion利用Consistent Self-Attention以无需训练的方式生成具有主题一致性的图像。这些一致的图像可以直接用于叙事,也可以作为第二阶段的输入。在第二阶段,StoryDiffusion基于这些一致的图像创建一致的过渡视频。

无需训练的一致图像生成

本节介绍本文的方法如何以无需训练的方式生成具有主题一致性的图像。解决上述问题的关键在于如何在图像批次内保持角色的一致性。这意味着需要在生成过程中在图像批次内建立连接。

在重新审视扩散模型中不同注意机制的作用后,受到启发,探索利用自注意力来服务于图像批次内的一致性,并提出了Consistent Self-Attention。将Consistent Self-Attention插入到现有的图像生成模型中U-Net架构的原始自注意力的位置,并重复使用原始自注意力权重以保持无需训练和可插拔性。

形式上,给定一批图像特征,其中B、N和C分别是批大小、每个图像中的tokens 数量和通道数量,定义一个函数Attention来计算自注意力。分别表示在注意力计算中使用的查询、键和值。原始的自注意力在每个图像特征中独立进行。将特征投影到,并送入注意力函数,得到

为了在批次内的图像之间建立互动以保持主题一致性,Consistent Self-Attention从批次中的其他图像特征中抽样一些tokens 。

其中,RandSample表示随机采样函数。采样后,将采样的tokens 与图像特征Ii配对,形成一个新的tokens 集。然后,我们对进行线性投影,生成Consistent Self-Attention的新键和值。在这里,原始的查询不会改变。最后,计算自注意力如下:

考虑到配对的tokens,我们的方法在图像批次中执行自注意力,促进不同图像特征之间的交互。这种类型的交互促进了模型在生成过程中对角色、面部和服装的融合。尽管以简单且无需训练的方式,我们的一致自注意力可以高效生成主题一致的图像,将在实验中详细展示。这些图像用作说明以叙述复杂的故事,如前面图2所示。为了更清晰地表达,还在下算法1中展示了伪代码。

视频生成的语义运动预测器

生成的主题一致图像序列可以通过在相邻图像对之间插入帧来进一步细化为视频。这可以被视为一个具有已知起始和结束帧条件的视频生成任务。然而,在经验上观察到,最近的方法,如SparseCtrl和SEINE,在两个图像之间的差异较大时无法稳定地连接两个条件图像。

这种限制源自它们完全依赖于时间模块来预测中间帧,而这可能不足以处理图像对之间的巨大状态差异。时间模块在每个空间位置上独立操作像素,因此,在推断中间帧时可能不充分考虑空间信息。这使得难以建模长和具有物理意义的运动。

为了解决这个问题,本文提出了语义运动预测器,它将图像编码成图像语义空间中的向量,以捕获空间信息,从而更准确地预测给定起始帧和结束帧之间的运动。

具体来说,在语义运动预测器中,首先使用一个函数 来建立从 RGB 图像到图像语义空间向量的映射,对空间信息进行编码。我们不直接使用线性层作为 ,而是利用预训练的 CLIP 图像编码器作为 ,以利用其零次学习能力来增强性能。利用 ,给定的起始帧 和结束帧 被压缩为图像语义空间向量 和 。

随后,在图像语义空间中,训练了一个基于 Transformer 结构的预测器来执行每个中间帧的预测。预测器首先执行线性插值,将两个帧 和 扩展为序列 ,其中 L 是所需的视频长度。然后,序列 被送入一系列 Transformer 块 B 来预测过渡帧:

接下来,需要将图像语义空间中预测的这些帧解码为最终的过渡视频。受图像提示方法的启发,将这些图像语义嵌入 定位为控制信号,将视频扩散模型定位为解码器,以利用视频扩散模型的生成能力。我们还插入额外的线性层将这些嵌入投影到键和值中,涉及到 U-Net 的跨注意力。

形式上,在扩散过程中,对于每个视频帧特征 ,我们将文本嵌入 T 和预测的图像语义嵌入 连接起来。跨注意力计算如下:

与先前的视频生成方法类似,我们通过计算预测过渡视频 和 L 帧地面真实值 之间的均方误差损失来优化我们的模型。

通过将图像编码到图像语义空间以整合空间位置关系,语义运动预测器能够更好地建模运动信息,从而实现生成具有大运动的平滑过渡视频。展示了显著改进的结果和比较,可以在前面图 1 和下图 5 中观察到。

实验

实现细节

对于生成主题一致的图像,由于无需训练和可插拔的特性,在Stable Diffusion XL 和 Stable Diffusion 1.5 上实现我们的方法。为了与比较模型保持一致,使用相同的预训练权重在 Stable-XL 模型上进行比较。所有比较模型都使用 50 步 DDIM 采样,无分类器引导分数一直设置为 5.0。

对于生成一致的视频,基于 Stable Diffusion 1.5 预训练模型实现我们的方法,并结合预先训练的时间模块以实现视频生成。所有比较模型采用 7.5 的无分类器引导分数和 50 步 DDIM 采样。根据先前的方法,使用 Webvid10M数据集来训练我们的过渡视频模型。更多细节可以在补充材料中找到。

一致性图像生成的比较

通过与最近的两种 ID 保持方法 IP-Adapter和 Photo Maker进行比较,评估了本文生成主题一致图像的方法。为了测试性能,使用 GPT-4 生成了二十个角色提示和一百个活动提示,描述了特定的活动。将角色提示与活动提示相结合,获取测试提示的组。对于每个测试案例,使用三种比较方法生成一组图像,描述一个人参与不同的活动,以测试模型的一致性。

由于 IP-Adapter 和 PhotoMaker 需要额外的图像来控制生成图像的 ID,首先生成一个角色图像作为控制图像。分别进行定性和定量比较,全面评估这些方法在一致图像生成方面的性能。

定性比较。定性结果如下图4所示。StoryDiffusion能够生成高度一致的图像,而其他方法,如IP-Adapter和PhotoMaker,可能会生成着装不一致或文本可控性降低的图像。

对于第一个示例,IP-Adapter方法生成了一个与文本提示“使用望远镜观星”的图像。PhotoMaker生成了与文本提示匹配的图像,但在三个生成的图像中着装存在显著差异。由StoryDiffusion生成的第三行图像展示了一致的面部和着装,并具有更好的文本可控性。对于最后一个示例“一位戴着超大耳机的专注玩家”,IP-Adapter在第二幅图像中失去了“狗”,在第三幅图像中失去了“纸牌”。PhotoMaker生成的图像无法保持着装。StoryDiffusion仍然生成了主题一致的图像,具有相同的面部和相同的着装,并符合提示中的描述。

定量比较。评估了定量比较,并在下表1中展示了结果。评估了两个指标,第一个是文本-图像相似度,它计算了文本提示和相应图像之间的CLIP分数。第二个是角色相似度,它衡量了角色图像的CLIP分数。StoryDiffusion在两个定量指标上表现最好,这显示了我们的方法在保持角色的同时符合提示描述方面的稳健性。

过渡视频生成的比较

在过渡视频生成中,与两种最先进的方法SparseCtrl和SEINE进行比较,以评估性能。随机采样了约1000个视频作为测试数据集。使用三种比较模型来预测过渡视频的中间帧,给定起始帧和结束帧,以评估它们的性能。

定性比较。进行了过渡视频生成的定性比较,并在前面图5中展示了结果。StoryDiffusion在生成平滑且物理合理的过渡视频方面明显优于SEINE和SparseCtrl。

对于第一个示例,两人在水下接吻,SEINE生成的中间帧已损坏,并直接跳转到最终帧。SparseCtrl生成的结果具有稍好的连续性,但中间帧仍包含损坏的图像,出现了许多手。然而,StoryDiffusion成功生成了具有非常平滑运动的视频,没有损坏的中间帧。

对于第二个示例,SEINE生成的中间帧有损坏的手臂。另一方面,SparseCtrl未能保持外观的一致性。StoryDiffusion生成了连贯性很好的一致视频。对于最后一个示例,我们生成的视频遵循物理空间关系,而SEINE和SparseCtrl只在过渡中改变外观。更多的视觉示例可以在补充材料中找到。

定量比较。遵循先前的研究,将本文的方法与SEINE和SparseCtrl进行了四项定量指标的比较,包括LPIPS-first,LPIPS-frames,CLIPSIM-first和CLIPSIM-frames,如下表2所示。

LPIPS-first和CLIPSIM-first衡量了第一帧和其他帧之间的相似性,反映了视频的整体连续性。LPIPS-frames和CLIPSIM-frames衡量了相邻帧之间的平均相似性,反映了帧之间的连续性。本文的模型在所有四个定量指标上表现优于其他两种方法。这些定量实验结果显示了我们的方法在生成一致且无缝过渡视频方面的强大性能。

消融研究

用户指定的ID生成。进行了一项消融研究,以测试具有用户指定ID的一致图像生成的性能。由于Consistent Self-Attention是可插拔且无需训练的,将Consistent Self-Attention与PhotoMaker结合起来,为一致图像生成提供了控制角色的图像。结果如下图6所示。在ID图像的控制下,StoryDiffusion仍然可以生成符合给定控制ID的一致图像,这强烈表明了我们的方法的可扩展性和即插即用性。

Consistent Self-Attention的采样率。Consistent Self-Attention从批处理中的其他图像中采样tokens,并在自注意计算过程中将它们合并到键和值中。为了确定最佳采样率,对Consistent Self-Attention的采样率进行了消融研究。结果也显示在图6中。发现采样率为0.3不能保持主题一致性,如上面图6左侧的图像中左侧的第三列所示,而较高的采样率成功地保持了一致性。在实践中,我们默认将采样率设置为0.5,以对扩散过程产生最小影响并保持一致性。

用户研究

我们进行了一项用户研究,共有30位参与者。每位用户被分配50个问题,以评估我们的主题一致图像生成方法和过渡视频生成方法的有效性。对于主题一致图像生成,与最近的最先进方法IP-Adapter和PhotoMaker进行比较。在过渡视频生成中,与最近的最先进方法SparseCtrl和SEINE进行比较。为了公平起见,结果的顺序是随机的,并且用户不知道每个生成模型对应的结果。

用户研究的实验结果如下表3所示。无论是对于主题一致图像生成还是过渡视频生成,我们的模型都表现出了压倒性的优势。用户研究进一步确认了StoryDiffusion的卓越性能。

结论

StoryDiffusion,一种可以以无需训练的方式生成一致图像以进行叙事,并将这些一致图像转换成视频的新方法。Consistent Self-Attention在多个图像之间建立连接,以高效地生成具有一致面部和服装的图像。 进一步提出了Semantic Motion Predictor,将这些图像转换成视频,并更好地叙述故事。希望StoryDiffusion能够激发未来可控图像和视频生成的努力。

参考文献

[1] STORYDIFFUSION: CONSISTENT SELF-ATTENTION FOR LONG-RANGE IMAGE AND VIDEO GENERATION

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/7229.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

视频降噪算法 Meshflow 介绍

介绍 Meshflow 视频降噪算法来自于 2017 年电子科技大学一篇高质量论文。 该论文提出了一个新的运动模型MeshFlow,它是一个空间平滑的稀疏运动场 (spatially smooth sparse motion field),其运动矢量 (motion vectors) 仅在网格顶点 (mesh vertexes) 处…

一般显卡3d建模渲染够用吗?3d云渲染助力

3D建模和渲染对计算机硬件有较高要求,特别是显卡。显卡的性能直接影响渲染速度,低端和高端显卡在渲染效率上存在显著差异。对于追求快速渲染的用户,高端显卡是首选。那么,4050显卡是否能够满足3D建模渲染的需求呢?下面我们来探讨…

[蓝桥杯2024]-PWN:ezheap解析(堆glibc2.31,glibc2.31下的double free)

查看保护 查看ida 大致就是只能创建0x60大小的堆块,并且uaf只能利用一次 完整exp: from pwn import* #context(log_leveldebug) pprocess(./ezheap2.31)def alloc(content):p.sendlineafter(b4.exit,b1)p.send(content) def free(index):p.sendlineaft…

Java-(乘法表之后)增强for循环

这里我们先做个了解,之后我会在数组中进行详细介绍Java5引入了一种主要用于数组或集合的增强型for循环Java增强型for循环语法格式如下 For(声明语句:表达式){ //代码语句 } 声明语句:声明新的局部变量,该变量的类型…

高效转化,智能私信软件策略揭秘

在数字营销的浪潮中,智能私信软件策略正成为提升转化率的重要工具。这种软件以其个性化、自动化的特点,正在重新定义与客户的互动方式,让企业能够更加高效地吸引并留住潜在客户。 智能私信软件的核心在于其高度的定制化和人性化设计。通过大数…

opencv基础篇 ——(十六)图形绘制与填充

OpenCV 提供了丰富的图形绘制和填充功能,主要通过 cv::rectangle, cv::circle, cv::line, cv::polylines, cv::fillPoly 和 cv::ellipse 等函数实现。以下是一些基本的图形绘制和填充操作的说明: 矩形: 函数: cv::rectangle语法: cv::rectangle(img, rec…

【C++】Vector详解

Vector是什么&#xff1f; vector是C&#xff08;STL&#xff09;中的一种序列容器Vector是一个动态数组&#xff0c;内存空间是连续的&#xff0c;支持随机访问&#xff0c;支持迭代器访问 Vector代码实现 变量指向 代码初始化 #include<iostream> using namespace …

mysql优化面试总结

mysql优化 和 mysql优化之索引 两篇文章有大量的实验性的内容&#xff0c;我暂时没时间理解&#xff0c;把八股部分总结到这篇文章中&#xff0c;方便记忆 我们为什么要对sql进行优化 我们开发项目上线初期&#xff0c;由于业务数据量相对较少&#xff0c;一些SQL的执行效率对…

2024年电工杯数学建模竞赛A题B题思路代码分享

您的点赞收藏是我继续更新的最大动力&#xff01; 欲获取更多电工杯学习资料&#xff0c;可点击如下卡片链接 点击链接加入群聊【2024电工杯】&#xff1a;http://qm.qq.com/cgi-bin/qm/qr?_wv1027&k_PrjarulWZU8JsAOA9gnj_oHKIjFe195&authKeySbv2XM853pynlnXiv6M58…

景源畅信数字:抖音怎么挂橱窗商品?

抖音作为一款短视频分享平台&#xff0c;近年来逐渐融入了电商功能&#xff0c;其中“橱窗”就是商家或个人展示和销售商品的一个重要工具。如何在抖音上挂橱窗商品&#xff0c;成为了众多商家关注的焦点。 一、确保账号资质&#xff1a;在抖音上挂橱窗商品前&#xff0c;需要确…

会声会影电影片头怎么做 会声会影电影质感调色技巧 会声会影视频制作教程 会声会影下载免费中文版

片头通常通过一系列的图像、音乐和文字等元素来引入电影的主题和氛围。通过视觉和音频的呈现方式&#xff0c;给观众留下深刻的第一印象&#xff0c;为电影的故事铺设基础。这篇文章来学习一下会声会影电影片头怎么做&#xff0c;会声会影电影质感调色技巧。 一、会声会影电影…

AD23中 X-Signal功能在DDR中T型线等长处理的应用

cadence的Auto-interative Delay Tune功能在设置多跟等长线是十分方便的&#xff1a; Allegro Auto-interactive Delay Tune-教育-高清完整正版视频在线观看-优酷 (youku.com) Allegro AIDT DDR3自动等长视频教程Auto-Interactive Delay Tune_哔哩哔哩_bilibili AD中需要先建…

[Java EE] 多线程(八):CAS问题与JUC包

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏:&#x1f355; Collection与数据结构 (90平均质量分)https://blog.csdn.net/2301_80050796/category_12621348.html?spm1001.2014.3001.5482 &#x1f9c0;Java …

MaxKB宝塔Docker安装并配置域名访问

准备 Linux系统 bt面板 默认环境LNMP随便装 服务器环境配置最好是4G&#xff0c; 占用硬盘存储大概1G 对于一些海外AI产品的对接需要使用香港或者海外的服务器 安装 在宝塔面板中打开SSH或者你本地使用SSH工具去链接服务器 运行docker命令 前提是放开服务器的8080端口 doc…

【吊打面试官系列】Java高并发篇 - Java 线程池中 submit() 和 execute()方法有什么区别?

大家好&#xff0c;我是锋哥。今天分享关于 【Java 线程池中 submit() 和 execute()方法有什么区别&#xff1f;】面试题&#xff0c;希望对大家有帮助&#xff1b; Java 线程池中 submit() 和 execute()方法有什么区别&#xff1f; 两个方法都可以向线程池提交任务&#xff0c…

Redis - Zset 有序集合

前言 它保留了集合不能有重复成员的特点&#xff0c;但与集合不同的是&#xff0c;有序集合中的每个元素都有⼀个唯⼀的浮点类型的分数&#xff08;score&#xff09;与之关联&#xff0c;有序集合中的元素是可以维护有序性的&#xff0c;但这个有序不是⽤下标作为排序依据⽽是…

STM32F4xx开发学习—GPIO

GPIO 学习使用STM32F407VET6GPIO外设 寄存器和标准外设库 1. 寄存器 存储器映射 存储器本身是不具有地址的&#xff0c;是一块具有特定功能的内存单元&#xff0c;它的地址是由芯片厂商或用户分配&#xff0c;给存储器分配地址的过程就叫做存储区映射。给内存单元分配地址之后…

Pytorch实现图片异常检测

图片异常检测 异常检测指的是在正常的图片中找到异常的数据&#xff0c;由于无法通过规则进行识别判断&#xff0c;这样的应用场景通常都是需要人工进行识别&#xff0c;比如残次品的识别&#xff0c;图片异常识别模型的目标是可以代替或者辅助人工进行识别异常图片。 AnoGAN…

存储故障后oracle报—ORA-01122/ORA-01207故障处理---惜分飞

客户存储异常,通过硬件恢复解决存储故障之后,oracle数据库无法正常启动(存储cache丢失),尝试recover数据库报ORA-00283 ORA-01122 ORA-01110 ORA-01207错误 以前处理过比较类似的存储故障case:又一起存储故障导致ORA-00333 ORA-00312恢复存储故障,强制拉库报ORA-600 kcbzib_kcr…

零基础入门篇①② Python标准数据类型--数字

Python从入门到精通系列专栏面向零基础以及需要进阶的读者倾心打造,9.9元订阅即可享受付费专栏权益,一个专栏带你吃透Python,专栏分为零基础入门篇、模块篇、网络爬虫篇、Web开发篇、办公自动化篇、数据分析篇…学习不断,持续更新,火热订阅中🔥专栏订阅地址 👉Python从…