视频降噪算法 Meshflow 介绍

介绍

Meshflow 视频降噪算法来自于 2017 年电子科技大学一篇高质量论文。

该论文提出了一个新的运动模型MeshFlow,它是一个空间平滑的稀疏运动场 (spatially smooth sparse motion field),其运动矢量 (motion vectors) 仅在网格顶点 (mesh vertexes) 处定义,它可被视为一个下采样的dense flow。具体来说,我们在视频帧上放置一个2D网格,然后跟踪连续帧之间的图像角点 (image corners),从而在每个特征位置生成运动矢量,然后将这些运动矢量转移到其对应的附近网格顶点,以使每个顶点从其周围特征中累积几个运动。MeshFlow是一个稀疏的运动矢量2D数组,其包含所有网格顶点处的运动。

该模型具有轻量级、非参数化、空间变形体等内在特征,能够有效地实现多帧图像的去噪。具体来说,meshflow是在相邻帧之间进行估计的,这些帧用于在一个滑动时间窗口内对齐帧。一个去噪的帧是由几帧在空间和时间的方式与离群拒绝融合产生的。各种具有挑战性的例子证明了该方法的有效性和实用性。

  • 项目地址:http://www.liushuaicheng.org/ICIP/2017/index.html
  • 论文下载地址:https://download.csdn.net/download/yanceyxin/89273166
  • git 地址:https://github.com/AlbusPeter/MeshFlow_Video_Denoising

关于Meshflow

Meshflow 算法是一种用于视频稳定和去噪的先进算法,它利用了一种新颖的运动模型来补偿相机运动。以下是关于 Meshflow 算法的一些关键点:

  • 在线视频稳定:Meshflow 算法提出了一种只有一帧延迟的在线视频稳定技术。

  • 运动模型:Meshflow 是一个空间平滑的稀疏运动场,其中运动向量仅定义在网格顶点上。

  • 特征点跟踪:通过在连续帧之间的图像特征角点跟踪,产生运动向量,这些向量随后被转移到相应的网格顶点。

  • 运动向量分配:网格顶点通过两个中值滤波器被分配唯一的运动矢量,以实现平滑效果。

  • 路径平滑:Meshflow 通过平滑技术,即预测的自适应路径平滑(Predicted Adaptive Path Smoothing,简称 PAPS),来平滑轨迹。

  • 实时工作:所提出的方法可以实时在线工作,适用于多种智能应用程序,如安全系统、机器人、无人机等。

  • 效率和效果:Meshflow 算法在计算效率和视频稳定效果上与现有的离线方法相比具有优势。

  • 视频去噪:Meshflow 还被用于视频去噪,通过利用 Meshflow 运动模型对相机运动进行补偿,产生干净的视频。

  • 非参数形式:Meshflow 的非参数形式和空间变化的运动表示使其在多帧去噪中非常有效和高效。

  • 资源:有开源实现和研究论文提供了 Meshflow 算法的更多细节和应用示例。

Meshflow 算法因其高效和实用性,在视频处理领域得到了广泛的关注和应用。它特别适用于需要实时视频稳定的场景,如无人机拍摄、手持摄像机录制等。同时,Meshflow 算法也可以用于视频去噪,提高视频质量。

原理

  1. 算法系统 pipeline
    在这里插入图片描述

  2. Meshflow运动模型
    Meshflow是一种稀疏运动场。它经常被用来估计相邻帧之间的运动。Meshflow 的运动模型建立过程如下:
    (1)Rich Features:检测快速图像特征,并通过KLT跟踪到相邻帧。
    (2)Motion Propagation:每个匹配的特征对产生一个运动矢量。
    (3)Median Filters:每个网格顶点应该只有一个唯一的运动矢量,它是由中值滤波器从每个顶点的运动候选数据中提取的。
    (4)Notations:运动符号标记。
    在这里插入图片描述

  3. Motions Accumulation 运动积累
    (1)运动追踪
    (2)运动积累
    在这里插入图片描述
    在这里插入图片描述

  4. Fusing 融合
    就是对齐后不同帧之间像素灰度值差小于一定阈值的像素进行平均作为当前帧的灰度值,这种简单的融合在灰度变化明显的区域容易造成“坏点”,会带来“鬼影”现象。

结果

  1. 性能
    在Intel i7 4.0GHz CPU和16G RAM上运行未优化c++实现平均可以处理260ms分辨率为1920×1080的帧;具体Meshflow方法分别需要27ms、21ms、38ms、25ms和149ms来跟踪特征估计网格流累积运动检查一致性融合像素。该方法还可以通过GPU进一步加速,特别是对于具有高度并行性的融合。
  2. 效果
    在这里插入图片描述
    在这里插入图片描述

代码示例

该作者在git提供了完整的c++代码实现,具体使用可参考README.md。

# MeshFlow_Video_Denoising
Source Code for MeshFlow Video Denoising <br> <br>![showcase](https://github.com/AlbusPeter/AlbusPeter.github.io/blob/master/projects/Meshflow-video-denoising/denoise.gif)OpenCV Version:2.4.11<br><br>This source code may not have the same processing speed as the paper illustrated. Because I replace the original matching algorithm into a simple one. This may also influence the quality of the denoising result a little. For more project detail, including the academic paper, project abstract and test data, please visiting the project page at http://www.liushuaicheng.org/ICIP/2017/index.html. <br><br>Usage
1. Create a new folder `build`<br>
2. Inside the folder, using the code below for cmake to build the project files:<br>cmake DCMAKE_BUILD_TYPE=Release ..3. Move the test video into this new folder and run this project.<br><br>For `Visual Studio` users, when run the project file, you should change the `single startup project` option in the solution property into the correct one (not the `ALLBUILD.EXE`).<br>For Windows users, using `Cmakelists.txt` as the cmakelist. (Remember to change the path for the OpenCV build folder.)<br>
For Linux users, using `Cmakelists_Linux.txt` as the cmakelist.<br><br>For further questions, feel free to contact me at `albuspeter.rzh@gmail.com`.<br>
Thanks [Guo Heng](https://github.com/GH_HOME) who helped me on the Cmake lists.CitationIf you find this useful in your research, please cite our paper "Meshflow Video Denoising" ([PDF](https://ieeexplore.ieee.org/document/8296826)):@inproceedings{ren2017meshflow,title={Meshflow video denoising},author={Ren, Zhihang and Li, Jiajia and Liu, Shuaicheng and Zeng, Bing},booktitle={2017 IEEE International Conference on Image Processing (ICIP)},pages={2966--2970},year={2017},organization={IEEE}
}

参考

  • https://cloud.tencent.com/developer/article/1089304

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/7224.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一般显卡3d建模渲染够用吗?3d云渲染助力

3D建模和渲染对计算机硬件有较高要求&#xff0c;特别是显卡。显卡的性能直接影响渲染速度&#xff0c;低端和高端显卡在渲染效率上存在显著差异。对于追求快速渲染的用户&#xff0c;高端显卡是首选。那么&#xff0c;4050显卡是否能够满足3D建模渲染的需求呢?下面我们来探讨…

[蓝桥杯2024]-PWN:ezheap解析(堆glibc2.31,glibc2.31下的double free)

查看保护 查看ida 大致就是只能创建0x60大小的堆块&#xff0c;并且uaf只能利用一次 完整exp&#xff1a; from pwn import* #context(log_leveldebug) pprocess(./ezheap2.31)def alloc(content):p.sendlineafter(b4.exit,b1)p.send(content) def free(index):p.sendlineaft…

Java-(乘法表之后)增强for循环

这里我们先做个了解&#xff0c;之后我会在数组中进行详细介绍Java5引入了一种主要用于数组或集合的增强型for循环Java增强型for循环语法格式如下 For(声明语句&#xff1a;表达式&#xff09;{ //代码语句 } 声明语句&#xff1a;声明新的局部变量&#xff0c;该变量的类型…

高效转化,智能私信软件策略揭秘

在数字营销的浪潮中&#xff0c;智能私信软件策略正成为提升转化率的重要工具。这种软件以其个性化、自动化的特点&#xff0c;正在重新定义与客户的互动方式&#xff0c;让企业能够更加高效地吸引并留住潜在客户。 智能私信软件的核心在于其高度的定制化和人性化设计。通过大数…

opencv基础篇 ——(十六)图形绘制与填充

OpenCV 提供了丰富的图形绘制和填充功能&#xff0c;主要通过 cv::rectangle, cv::circle, cv::line, cv::polylines, cv::fillPoly 和 cv::ellipse 等函数实现。以下是一些基本的图形绘制和填充操作的说明&#xff1a; 矩形: 函数: cv::rectangle语法: cv::rectangle(img, rec…

【C++】Vector详解

Vector是什么&#xff1f; vector是C&#xff08;STL&#xff09;中的一种序列容器Vector是一个动态数组&#xff0c;内存空间是连续的&#xff0c;支持随机访问&#xff0c;支持迭代器访问 Vector代码实现 变量指向 代码初始化 #include<iostream> using namespace …

mysql优化面试总结

mysql优化 和 mysql优化之索引 两篇文章有大量的实验性的内容&#xff0c;我暂时没时间理解&#xff0c;把八股部分总结到这篇文章中&#xff0c;方便记忆 我们为什么要对sql进行优化 我们开发项目上线初期&#xff0c;由于业务数据量相对较少&#xff0c;一些SQL的执行效率对…

2024年电工杯数学建模竞赛A题B题思路代码分享

您的点赞收藏是我继续更新的最大动力&#xff01; 欲获取更多电工杯学习资料&#xff0c;可点击如下卡片链接 点击链接加入群聊【2024电工杯】&#xff1a;http://qm.qq.com/cgi-bin/qm/qr?_wv1027&k_PrjarulWZU8JsAOA9gnj_oHKIjFe195&authKeySbv2XM853pynlnXiv6M58…

景源畅信数字:抖音怎么挂橱窗商品?

抖音作为一款短视频分享平台&#xff0c;近年来逐渐融入了电商功能&#xff0c;其中“橱窗”就是商家或个人展示和销售商品的一个重要工具。如何在抖音上挂橱窗商品&#xff0c;成为了众多商家关注的焦点。 一、确保账号资质&#xff1a;在抖音上挂橱窗商品前&#xff0c;需要确…

会声会影电影片头怎么做 会声会影电影质感调色技巧 会声会影视频制作教程 会声会影下载免费中文版

片头通常通过一系列的图像、音乐和文字等元素来引入电影的主题和氛围。通过视觉和音频的呈现方式&#xff0c;给观众留下深刻的第一印象&#xff0c;为电影的故事铺设基础。这篇文章来学习一下会声会影电影片头怎么做&#xff0c;会声会影电影质感调色技巧。 一、会声会影电影…

AD23中 X-Signal功能在DDR中T型线等长处理的应用

cadence的Auto-interative Delay Tune功能在设置多跟等长线是十分方便的&#xff1a; Allegro Auto-interactive Delay Tune-教育-高清完整正版视频在线观看-优酷 (youku.com) Allegro AIDT DDR3自动等长视频教程Auto-Interactive Delay Tune_哔哩哔哩_bilibili AD中需要先建…

[Java EE] 多线程(八):CAS问题与JUC包

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏:&#x1f355; Collection与数据结构 (90平均质量分)https://blog.csdn.net/2301_80050796/category_12621348.html?spm1001.2014.3001.5482 &#x1f9c0;Java …

MaxKB宝塔Docker安装并配置域名访问

准备 Linux系统 bt面板 默认环境LNMP随便装 服务器环境配置最好是4G&#xff0c; 占用硬盘存储大概1G 对于一些海外AI产品的对接需要使用香港或者海外的服务器 安装 在宝塔面板中打开SSH或者你本地使用SSH工具去链接服务器 运行docker命令 前提是放开服务器的8080端口 doc…

【吊打面试官系列】Java高并发篇 - Java 线程池中 submit() 和 execute()方法有什么区别?

大家好&#xff0c;我是锋哥。今天分享关于 【Java 线程池中 submit() 和 execute()方法有什么区别&#xff1f;】面试题&#xff0c;希望对大家有帮助&#xff1b; Java 线程池中 submit() 和 execute()方法有什么区别&#xff1f; 两个方法都可以向线程池提交任务&#xff0c…

Redis - Zset 有序集合

前言 它保留了集合不能有重复成员的特点&#xff0c;但与集合不同的是&#xff0c;有序集合中的每个元素都有⼀个唯⼀的浮点类型的分数&#xff08;score&#xff09;与之关联&#xff0c;有序集合中的元素是可以维护有序性的&#xff0c;但这个有序不是⽤下标作为排序依据⽽是…

STM32F4xx开发学习—GPIO

GPIO 学习使用STM32F407VET6GPIO外设 寄存器和标准外设库 1. 寄存器 存储器映射 存储器本身是不具有地址的&#xff0c;是一块具有特定功能的内存单元&#xff0c;它的地址是由芯片厂商或用户分配&#xff0c;给存储器分配地址的过程就叫做存储区映射。给内存单元分配地址之后…

Pytorch实现图片异常检测

图片异常检测 异常检测指的是在正常的图片中找到异常的数据&#xff0c;由于无法通过规则进行识别判断&#xff0c;这样的应用场景通常都是需要人工进行识别&#xff0c;比如残次品的识别&#xff0c;图片异常识别模型的目标是可以代替或者辅助人工进行识别异常图片。 AnoGAN…

存储故障后oracle报—ORA-01122/ORA-01207故障处理---惜分飞

客户存储异常,通过硬件恢复解决存储故障之后,oracle数据库无法正常启动(存储cache丢失),尝试recover数据库报ORA-00283 ORA-01122 ORA-01110 ORA-01207错误 以前处理过比较类似的存储故障case:又一起存储故障导致ORA-00333 ORA-00312恢复存储故障,强制拉库报ORA-600 kcbzib_kcr…

零基础入门篇①② Python标准数据类型--数字

Python从入门到精通系列专栏面向零基础以及需要进阶的读者倾心打造,9.9元订阅即可享受付费专栏权益,一个专栏带你吃透Python,专栏分为零基础入门篇、模块篇、网络爬虫篇、Web开发篇、办公自动化篇、数据分析篇…学习不断,持续更新,火热订阅中🔥专栏订阅地址 👉Python从…

接口测试及常用的接口测试工具(Postman/Jmeter)

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 首先&#xff0c;什么是接口呢&#xff1f; 接口一般来说有两种&#xff0c;一种是程序内部的接…