原论文中的引理 2 \textbf{2} 2
1. \textbf{1. } 1. 引理 1 \textbf{1} 1(前提之一)
1.1. \textbf{1.1. } 1.1. 引理 1 \textbf{1} 1的内容
👉前提: X ∼ N ( 0 , σ ) X\sim{}N(0,\sigma) X∼N(0,σ)即 f ( x ) = 1 2 π σ e – x 2 2 σ 2 f(x)\text{=}\cfrac{1}{\sqrt{2\pi}\sigma}e^{–\frac{x^{2}}{2\sigma^{2}}} f(x)=2πσ1e–2σ2x2,且 ∀ α < 1 2 σ 2 \forall{}\alpha{}\text{<}\cfrac{1}{2\sigma^{2}} ∀α<2σ21
👉结论: E [ e α X 2 ] = 1 1 – 2 α σ 2 \mathrm{E}\left[e^{\alpha{}X^{2}}\right]\text{=}\cfrac{1}{\sqrt{1–2\alpha{}\sigma^{2}}} E[eαX2]=1–2ασ21
2. \textbf{2. } 2. 引理 1 \textbf{1} 1的证明
↪ E [ e α X 2 ] = ∫ – ∞ ∞ e α x 2 f ( x ) d x = ∫ – ∞ ∞ e α x 2 ⋅ 1 2 π σ e – x 2 2 σ 2 d x = ∫ – ∞ ∞ 1 2 π σ e – x 2 2 σ 2 ( 1 – 2 α σ 2 ) d x \displaystyle{}\mathrm{E}\left[e^{\alpha{}X^2}\right]\text{=}\int_{–\infty}^{\infty}e^{\alpha{}x^2}f(x)dx\text{=}\int_{–\infty}^{\infty} e^{\alpha x^2} \cdot \frac{1}{\sqrt{2 \pi} \sigma} e^{–\frac{x^2}{2 \sigma^2}} d x\text{=}\int_{–\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma} e^{–\frac{x^2}{2 \sigma^2}\left(1–2 \alpha \sigma^2\right)} d x E[eαX2]=∫–∞∞eαx2f(x)dx=∫–∞∞eαx2⋅2πσ1e–2σ2x2dx=∫–∞∞2πσ1e–2σ2x2(1–2ασ2)dx
↪令 σ ′ = σ 1 – 2 α σ 2 \sigma^{\prime}=\cfrac{\sigma}{\sqrt{1–2 \alpha \sigma^2}} σ′=1–2ασ2σ,其中必定要求 1 – 2 α σ 2 >0 1–2 \alpha \sigma^2\text{>0} 1–2ασ2>0即 α < 1 2 σ 2 \alpha{}\text{<}\cfrac{1}{2\sigma^{2}} α<2σ21
↪ E [ e α X 2 ] = ∫ – ∞ ∞ 1 – 2 α σ 2 2 π σ 1 – 2 α σ 2 e – x 2 2 σ 2 ( 1 – 2 α σ 2 ) d x = 1 1 – 2 α σ 2 ∫ − ∞ ∞ 1 2 π σ ′ e − x 2 2 σ ′ 2 d x \displaystyle{}\mathrm{E}\left[e^{\alpha X^2}\right]\text{=}\int_{–\infty}^{\infty} \cfrac{\sqrt{1–2 \alpha \sigma^2}}{\sqrt{2 \pi} \sigma \sqrt{1–2 \alpha \sigma^2}} e^{–\frac{x^2}{2 \sigma^2}\left(1–2 \alpha \sigma^2\right)} d x\text{=}\cfrac{1}{\sqrt{1–2\alpha{}\sigma^{2}}}\int_{-\infty}^{\infty} \cfrac{1}{\sqrt{2 \pi} \sigma^{\prime}} e^{-\frac{x^2}{2 \sigma^{\prime 2}}} d x E[eαX2]=∫–∞∞2πσ1–2ασ21–2ασ2e–2σ2x2(1–2ασ2)dx=1–2ασ21∫−∞∞2πσ′1e−2σ′2x2dx
↪考虑到 ∫ − ∞ ∞ 1 2 π σ ′ e − x 2 2 σ ′ 2 d x = 1 \displaystyle{}\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma^{\prime}} e^{-\frac{x^2}{2 \sigma^{\prime 2}}} d x\text{=}1 ∫−∞∞2πσ′1e−2σ′2x2dx=1,所以 E [ e α X 2 ] = 1 1 – 2 α σ 2 \mathrm{E}\left[e^{\alpha{}X^{2}}\right]\text{=}\cfrac{1}{\sqrt{1–2\alpha{}\sigma^{2}}} E[eαX2]=1–2ασ21
2. \textbf{2. } 2. 引理 2 \textbf{2} 2
2.1. \textbf{2.1. } 2.1. 引理 2 \textbf{2} 2的内容
👉前提 1 1 1:设一个随机矩阵 S = ( s i j ) ∈ R t × d S\text{=}(s_{ij})\text{∈}\mathbb{R}^{t\text{×}d} S=(sij)∈Rt×d,每个元素 s i j s_{ij} sij独立同分布于 N ( 0 , 1 ) N(0,1) N(0,1)
👉前提 2 2 2:对任意固定向量 u ∈ R d × 1 u\text{∈}\mathbb{R}^{d\text{×}1} u∈Rd×1(即 u ′ u^{\prime} u′不随机),定义 u ′ = 1 t ( S u ) u^{\prime}\text{=}\cfrac{1}{\sqrt{t}}(Su) u′=t1(Su)
👉:结论 1 1 1: E [ ∥ u ′ ∥ 2 ] = ∥ u ∥ 2 \text{E}\left[\left\|u^{\prime}\right\|^2\right]\text{=}\|u\|^2 E[∥u′∥2]=∥u∥2,即 ∥ u ′ ∥ 2 \left\|u^{\prime}\right\|^2 ∥u′∥2和 ∥ u ∥ 2 \|u\|^2 ∥u∥2在统计学上是相等的
👉结论 2 2 2: Pr [ ∥ u ′ ∥ 2 ∉ ( 1 ± ε ) ∥ u ∥ 2 ] ≤ 2 e – ( ε 2 – ε 3 ) t 4 \text{Pr}\left[\left\|u^{\prime}\right\|^2\notin{}(1\text{±}\varepsilon{})\|u\|^2\right]\text{≤}2e^{–\left(\varepsilon{}^2–\varepsilon{}^3\right)\frac{t}{4}} Pr[∥u′∥2∈/(1±ε)∥u∥2]≤2e–(ε2–ε3)4t,即 ∥ u ′ ∥ 2 \left\|u^{\prime}\right\|^2 ∥u′∥2和 ∥ u ∥ 2 \|u\|^2 ∥u∥2在实际值上偏差极小且可控
2.2. \textbf{2.2. } 2.2. 引理 2 \textbf{2} 2的证明
2.2.1. \textbf{2.2.1. } 2.2.1. 对结论 1 \textbf{1} 1的证明
↪对于 s i j ∼ N ( 0 , 1 ) s_{ij}\sim{}N(0,1) sij∼N(0,1),则有 S ⋅ j u = ∑ i = 1 d s i j u i ∼ N ( 0 , ∥ u ∥ 2 ) \displaystyle{}S_{\cdot{}j}u\text{=}\sum_{i=1}^{d}s_{ij}u_i\sim{}N(0,\|u\|^2) S⋅ju=i=1∑dsijui∼N(0,∥u∥2)
- 均值 E [ S ⋅ j u ] =E [ ∑ i = 1 d s i j u i ] = ∑ i = 1 d u i E [ s i j ] = 0 \displaystyle{}\text{E}\left[S_{\cdot{}j}u\right]\text{=}\text{E}\left[\sum_{i=1}^ds_{ij}u_i\right]\text{=}\sum_{i=1}^du_i\text{E}\left[s_{ij}\right]\text{=}0 E[S⋅ju]=E[i=1∑dsijui]=i=1∑duiE[sij]=0
- 方差 Var [ S ⋅ j u ] =Var [ ∑ i = 1 d s i j u i ] = ∑ i = 1 d Var [ s i j u i ] = ∑ i = 1 d u i 2 Var [ s i j ] = ∑ i = 1 d u i 2 = ∥ u ∥ 2 \displaystyle{}\text{Var}\left[S_{\cdot{}j}u\right]\text{=}\text{Var}\left[\sum_{i=1}^ds_{ij}u_i\right]\text{=}\sum_{i=1}^d\text{Var}[s_{ij}u_i]\text{=}\sum_{i=1}^du_i^2\text{Var}[s_{ij}]\text{=}\sum_{i=1}^du_i^2\text{=}\|u\|^2 Var[S⋅ju]=Var[i=1∑dsijui]=i=1∑dVar[sijui]=i=1∑dui2Var[sij]=i=1∑dui2=∥u∥2
↪正态分布性质 E [ X 2 ] = σ 2 \text{E}[X^2]\text{=}\sigma{}^2 E[X2]=σ2,所以 E [ ( S ⋅ j u ) 2 ] = ∥ u ∥ 2 \text{E}\left[\left(S_{\cdot{}j}u\right)^2\right]\text{=}\|u\|^2 E[(S⋅ju)2]=∥u∥2
↪所以 E [ ∥ S u ∥ 2 ] =E [ ∑ j = 1 t ( S ⋅ j u ) 2 ] = ∑ j = 1 t E [ ( S ⋅ j u ) 2 ] = t ∥ u ∥ 2 \displaystyle{}\text{E}\left[\|Su\|^2\right]\text{=}\text{E}\left[\sum_{j\text{=}1}^t\left(S_{\cdot{}j}u\right)^2\right]\text{=}\sum_{j=1}^t\text{E}\left[\left(S_{\cdot{}j}u\right)^2\right]\text{=}t\|u\|^2 E[∥Su∥2]=E[j=1∑t(S⋅ju)2]=j=1∑tE[(S⋅ju)2]=t∥u∥2
↪根据 u ′ = 1 t ( S u ) u^{\prime}\text{=}\cfrac{1}{\sqrt{t}}(Su) u′=t1(Su),得到 ∥ u ′ ∥ 2 = 1 t ∥ S u ∥ 2 \left\|u^{\prime}\right\|^2\text{=}\cfrac{1}{t}\|Su\|^2 ∥u′∥2=t1∥Su∥2
↪所以 E [ ∥ u ′ ∥ 2 ] =E [ 1 t ∥ S u ∥ 2 ] = 1 t E [ ∥ S u ∥ 2 ] = 1 t ( t ∥ u ∥ 2 ) = ∥ u ∥ 2 \displaystyle{}\text{E}\left[\left\|u^{\prime}\right\|^2\right]\text{=}\text{E}\left[\cfrac{1}{t}\|Su\|^2\right]\text{=}\cfrac{1}{t}\text{E}\left[\|Su\|^2\right]\text{=}\cfrac{1}{t}\left(t\|u\|^2\right)\text{=}\|u\|^2 E[∥u′∥2]=E[t1∥Su∥2]=t1E[∥Su∥2]=t1(t∥u∥2)=∥u∥2
2.2.2. \textbf{2.2.2. } 2.2.2. 对结论 2 \textbf{2} 2的证明(正半边)
↪考虑到 S ⋅ j u ∼ N ( 0 , ∥ u ∥ 2 ) \displaystyle{}S_{\cdot{}j}u\sim{}N(0,\|u\|^2) S⋅ju∼N(0,∥u∥2),故将其归一化为 X j = S ⋅ j u ∥ u ∥ ∼ N ( 0 , 1 ) X_j\text{=}\cfrac{S_{\cdot{}j}u}{\|u\|}\sim{}N(0,1) Xj=∥u∥S⋅ju∼N(0,1)
↪由此定义 X = ∑ j = 1 t X j 2 \displaystyle{}X\text{=}\sum_{j=1}^tX_j^2 X=j=1∑tXj2(自由度为 t t t的 χ 2 \chi^2 χ2分布),由此 ∥ u ′ ∥ 2 = 1 t ∥ S u ∥ 2 = 1 t ∑ j = 1 t ( S ⋅ j u ) 2 = ∥ u ∥ 2 1 t ∑ j = 1 t X j 2 = 1 t ∥ u ∥ 2 X \displaystyle{}\left\|u^{\prime}\right\|^2\text{=}\cfrac{1}{t}\|Su\|^2\text{=}\cfrac{1}{t}\sum_{j=1}^t\left(S_{\cdot{}j}u\right)^2\text{=}\|u\|^2\cfrac{1}{t}\sum_{j=1}^tX_j^2\text{=}\cfrac{1}{t}\|u\|^2X ∥u′∥2=t1∥Su∥2=t1j=1∑t(S⋅ju)2=∥u∥2t1j=1∑tXj2=t1∥u∥2X
↪由此 Pr [ ∥ u ′ ∥ 2 ≥ ( 1 + ε ) ∥ u ∥ 2 ] =Pr [ X ≥ ( 1 + ε ) t ] \text{Pr}\left[\left\|u^{\prime}\right\|^2\text{≥}(1\text{+}\varepsilon)\|u\|^2\right]\text{=}\text{Pr}\left[X\text{≥}(1\text{+}\varepsilon{})t\right] Pr[∥u′∥2≥(1+ε)∥u∥2]=Pr[X≥(1+ε)t]
↪考虑马可夫不等式的指数形式: Pr [ X ≥ ( 1 + ε ) t ] =Pr [ e α X ≥ e α ( 1 + ε ) t ] ≤ E [ e α X ] e α ( 1 + ε ) t \text{Pr}\left[X\text{≥}(1\text{+}\varepsilon{})t\right]\text{=}\text{Pr}\left[e^{\alpha{}X}\text{≥}e^{\alpha{}(1\text{+}\varepsilon{})t}\right]\text{≤}\cfrac{\text{E}\left[e^{\alpha{}X}\right]}{e^{\alpha{}(1\text{+}\varepsilon{})t}} Pr[X≥(1+ε)t]=Pr[eαX≥eα(1+ε)t]≤eα(1+ε)tE[eαX]
- 考虑到 X = ∑ j = 1 t X j 2 \displaystyle{}X\text{=}\sum_{j=1}^tX_j^2 X=j=1∑tXj2,所以 E [ e α X ] =E [ e α ( X 1 2 + X 2 2 + ⋯ + X t 2 ) ] =E [ e α X 1 2 e α X 2 2 ⋯ e α X t 2 ] =E [ ∏ j = 1 t e α X j 2 ] = ∏ j = 1 t E [ e α X j 2 ] \displaystyle{}\text{E}\left[e^{\alpha{}X}\right]\text{=}\text{E}\left[e^{\alpha{}(X^2_1\text{+}X^2_2\text{+}\cdots\text{+}X^2_t)}\right]\text{=}\text{E}\left[e^{\alpha{}X^2_1}e^{\alpha{}X^2_2}\cdots{}e^{\alpha{}X^2_t}\right]\text{=}\text{E}\left[\prod_{j=1}^te^{\alpha{}X^2_j}\right]\text{=}\prod_{j=1}^t\text{E}\left[e^{\alpha{}X_j^2}\right] E[eαX]=E[eα(X12+X22+⋯+Xt2)]=E[eαX12eαX22⋯eαXt2]=E[j=1∏teαXj2]=j=1∏tE[eαXj2]
- 在引理 1 1 1中已经证明 E [ e α X j 2 ] = 1 1 – 2 α σ 2 ( α < 1 2 σ 2 ) \text{E}\left[e^{\alpha{}X_j^{2}}\right]\text{=}\cfrac{1}{\sqrt{1–2\alpha{}\sigma^{2}}}(\alpha{}\text{<}\cfrac{1}{2\sigma^{2}}) E[eαXj2]=1–2ασ21(α<2σ21),考虑到此处 σ ( X j ) = 1 \sigma({X_j})\text{=}1 σ(Xj)=1所以 E [ e α X j 2 ] = 1 1 – 2 α ( α < 1 2 ) \text{E}\left[e^{\alpha{}X_j^{2}}\right]\text{=}\cfrac{1}{\sqrt{1–2\alpha{}}}(\alpha{}\text{<}\cfrac{1}{2}) E[eαXj2]=1–2α1(α<21)
- 所以 E [ e α X ] = ∏ j = 1 t ( 1 1 – 2 α ) = ( 1 1 – 2 α ) t = 1 ( 1 – 2 α ) t 2 \displaystyle{}\text{E}\left[e^{\alpha{}X}\right]\text{=}\prod_{j=1}^t\left(\cfrac{1}{\sqrt{1–2\alpha{}}}\right)\text{=}\left(\cfrac{1}{\sqrt{1–2\alpha{}}}\right)^t\text{=}\cfrac{1}{(1–2\alpha)^{\frac{t}{2}}} E[eαX]=j=1∏t(1–2α1)=(1–2α1)t=(1–2α)2t1
- 代入原式得 Pr [ X ≥ ( 1 + ε ) t ] ≤ E [ e α X ] e α ( 1 + ε ) t = ( 1 – 2 α ) – t 2 e α ( 1 + ε ) t = ( e – 2 ( 1 + ε ) α 1 – 2 α ) t 2 \text{Pr}\left[X\text{≥}(1\text{+}\varepsilon{})t\right]\text{≤}\cfrac{\text{E}\left[e^{\alpha{}X}\right]}{e^{\alpha{}(1\text{+}\varepsilon{})t}}\text{=}\cfrac{{(1–2\alpha)^{–\frac{t}{2}}}}{e^{\alpha{}(1\text{+}\varepsilon{})t}}\text{=}\left(\cfrac{e^{–2(1\text{+}\varepsilon)\alpha}}{1–2\alpha}\right)^{\frac{t}{2}} Pr[X≥(1+ε)t]≤eα(1+ε)tE[eαX]=eα(1+ε)t(1–2α)–2t=(1–2αe–2(1+ε)α)2t
↪对于 Pr [ X ≥ ( 1 + ε ) t ] ≤ ( e – 2 ( 1 + ε ) α 1 – 2 α ) t 2 \text{Pr}\left[X\text{≥}(1\text{+}\varepsilon{})t\right]\text{≤}\left(\cfrac{e^{–2(1\text{+}\varepsilon)\alpha}}{1–2\alpha}\right)^{\frac{t}{2}} Pr[X≥(1+ε)t]≤(1–2αe–2(1+ε)α)2t,有必要在 0 < α < 1 2 0\text{<}\alpha{}\text{<}\cfrac{1}{2} 0<α<21的范围内确定 f ( α ) = ( e – 2 ( 1 + ε ) α 1 – 2 α ) t 2 f(\alpha)\text{=}\left(\cfrac{e^{–2(1\text{+}\varepsilon)\alpha}}{1–2\alpha}\right)^{\frac{t}{2}} f(α)=(1–2αe–2(1+ε)α)2t的最小值
对于 ln ( f ( α ) ) = t 2 [ – 2 ( 1 + ε ) α – ln ( 1 – 2 α ) ] \ln(f(\alpha))\text{=}\cfrac{t}{2}[–2(1\text{+}\varepsilon)\alpha–\ln(1–2\alpha)] ln(f(α))=2t[–2(1+ε)α–ln(1–2α)],令 g ( α ) =– 2 ( 1 + ε ) α – ln ( 1 – 2 α ) g(\alpha)\text{=}–2(1\text{+}\varepsilon)\alpha–\ln(1–2\alpha) g(α)=–2(1+ε)α–ln(1–2α),如下图( ε = 3 \varepsilon\text{=}3 ε=3)
一阶导 d g ( α ) d α = 2 1 – 2 α – 2 ( 1 + ε ) \cfrac{\text{d}g{(\alpha)}}{\text{d}\alpha}\text{=}\cfrac{2}{1–2\alpha}–2(1\text{+}\varepsilon) dαdg(α)=1–2α2–2(1+ε),具有临界点 α ∗ = ε 2 ( 1 + ε ) ∈ ( 0 , 1 2 ) \alpha^*\text{=}\cfrac{\varepsilon}{2(1\text{+}\varepsilon)}\text{∈}\left(0,\cfrac{1}{2}\right) α∗=2(1+ε)ε∈(0,21),故 ε > 0 \varepsilon\text{>}0 ε>0
代入原式即得 Pr [ X ≥ ( 1 + ε ) t ] ≤ ( e – 2 ( 1 + ε ) α 1 – 2 α ) t 2 ≤ ( ( 1 + ε ) e – ε ) t 2 \text{Pr}\left[X\text{≥}(1\text{+}\varepsilon{})t\right]\text{≤}\left(\cfrac{e^{–2(1\text{+}\varepsilon)\alpha}}{1–2\alpha}\right)^{\frac{t}{2}}\text{≤}\left((1\text{+}\varepsilon) e^{–\varepsilon}\right)^{\frac{t}{2}} Pr[X≥(1+ε)t]≤(1–2αe–2(1+ε)α)2t≤((1+ε)e–ε)2t
↪进一步对 h ( ε ) = ( ( 1 + ε ) e – ε ) t 2 h(\varepsilon)\text{=}\left((1\text{+}\varepsilon)e^{–\varepsilon}\right)^{\frac{t}{2}} h(ε)=((1+ε)e–ε)2t的分析
- 泰勒展开 ln ( 1 + ε ) = ε – ε 2 2 + ε 3 3 + O ( ε 4 ) \ln{}(1\text{+}\varepsilon)\text{=}\varepsilon–\cfrac{\varepsilon^2}{2}\text{+}\cfrac{\varepsilon^3}{3}\text{+}O\left(\varepsilon^4\right) ln(1+ε)=ε–2ε2+3ε3+O(ε4),则 ln ( 1 + ε ) – ε ≤– ε 2 2 + ε 3 3 ≤– 1 2 ( ε 2 – ε 3 ) \ln(1\text{+}\varepsilon)–\varepsilon\text{≤}–\cfrac{\varepsilon^2}{2}\text{+}\cfrac{\varepsilon^3}{3}\text{≤}–\cfrac{1}{2}\left(\varepsilon^2–\varepsilon^3\right) ln(1+ε)–ε≤–2ε2+3ε3≤–21(ε2–ε3)
- 故在 ln ( h ( ε ) ) = t 2 ( ln ( 1 + ε ) – ε ) ≤– t 4 ( ε 2 – ε 3 ) \ln(h(\varepsilon))\text{=}\cfrac{t}{2}(\ln(1\text{+}\varepsilon)–\varepsilon)\text{≤}–\cfrac{t}{4}\left(\varepsilon^2–\varepsilon^3\right) ln(h(ε))=2t(ln(1+ε)–ε)≤–4t(ε2–ε3),即 h ( ε ) ≤ e – t 4 ( ε 2 – ε 3 ) h(\varepsilon)\text{≤}e^{–\frac{t}{4}\left(\varepsilon^2–\varepsilon^3\right)} h(ε)≤e–4t(ε2–ε3)
↪最后 Pr [ ∥ u ′ ∥ 2 ≥ ( 1 + ε ) ∥ u ∥ 2 ] =Pr [ X ≥ ( 1 + ε ) t ] ≤ ( e – 2 ( 1 + ε ) α 1 – 2 α ) t 2 ≤ ( ( 1 + ε ) e – ε ) t 2 ≤ e – t 4 ( ε 2 – ε 3 ) \text{Pr}\left[\left\|u^{\prime}\right\|^2\text{≥}(1\text{+}\varepsilon)\|u\|^2\right]\text{=}\text{Pr}\left[X\text{≥}(1\text{+}\varepsilon{})t\right]\text{≤}\left(\cfrac{e^{–2(1\text{+}\varepsilon)\alpha}}{1–2\alpha}\right)^{\frac{t}{2}}\text{≤}\left((1\text{+}\varepsilon) e^{–\varepsilon}\right)^{\frac{t}{2}}\text{≤}e^{–\frac{t}{4}\left(\varepsilon^2–\varepsilon^3\right)} Pr[∥u′∥2≥(1+ε)∥u∥2]=Pr[X≥(1+ε)t]≤(1–2αe–2(1+ε)α)2t≤((1+ε)e–ε)2t≤e–4t(ε2–ε3)
2.2.3. \textbf{2.2.3. } 2.2.3. 对结论 2 \textbf{2} 2的证明(负半边)
↪考虑到 S ⋅ j u ∼ N ( 0 , ∥ u ∥ 2 ) \displaystyle{}S_{\cdot{}j}u\sim{}N(0,\|u\|^2) S⋅ju∼N(0,∥u∥2),故将其归一化为 X j = S ⋅ j u ∥ u ∥ ∼ N ( 0 , 1 ) X_j\text{=}\cfrac{S_{\cdot{}j}u}{\|u\|}\sim{}N(0,1) Xj=∥u∥S⋅ju∼N(0,1)
↪由此定义 X = ∑ j = 1 t X j 2 \displaystyle{}X\text{=}\sum_{j=1}^tX_j^2 X=j=1∑tXj2(自由度为 t t t的 χ 2 \chi^2 χ2分布),由此 ∥ u ′ ∥ 2 = 1 t ∥ S u ∥ 2 = 1 t ∑ j = 1 t ( S ⋅ j u ) 2 = ∥ u ∥ 2 1 t ∑ j = 1 t X j 2 = 1 t ∥ u ∥ 2 X \displaystyle{}\left\|u^{\prime}\right\|^2\text{=}\cfrac{1}{t}\|Su\|^2\text{=}\cfrac{1}{t}\sum_{j=1}^t\left(S_{\cdot{}j}u\right)^2\text{=}\|u\|^2\cfrac{1}{t}\sum_{j=1}^tX_j^2\text{=}\cfrac{1}{t}\|u\|^2X ∥u′∥2=t1∥Su∥2=t1j=1∑t(S⋅ju)2=∥u∥2t1j=1∑tXj2=t1∥u∥2X
↪由此 Pr [ ∥ u ′ ∥ 2 ≤ ( 1 – ε ) ∥ u ∥ 2 ] =Pr [ X ≤ ( 1 – ε ) t ] =Pr [ – X ≥– ( 1 – ε ) t ] \text{Pr}\left[\left\|u^{\prime}\right\|^2\text{≤}(1\text{–}\varepsilon)\|u\|^2\right]\text{=}\text{Pr}\left[X\text{≤}(1\text{–}\varepsilon{})t\right]\text{=}\text{Pr}\left[–X\text{≥}–(1\text{–}\varepsilon{})t\right] Pr[∥u′∥2≤(1–ε)∥u∥2]=Pr[X≤(1–ε)t]=Pr[–X≥–(1–ε)t]
↪考虑马可夫不等式的指数形式: Pr [ – X ≥– ( 1 – ε ) t ] =Pr [ e α ( – X ) ≥ e – α ( 1 – ε ) t ] ≤ E [ e – α X ] e – α ( 1 – ε ) t \text{Pr}\left[–X\text{≥}–(1\text{–}\varepsilon{})t\right]\text{=}\text{Pr}\left[e^{\alpha{}(–X)}\text{≥}e^{–\alpha{}(1\text{–}\varepsilon{})t}\right]\text{≤}\cfrac{\text{E}\left[e^{–\alpha{}X}\right]}{e^{–\alpha{}(1\text{–}\varepsilon{})t}} Pr[–X≥–(1–ε)t]=Pr[eα(–X)≥e–α(1–ε)t]≤e–α(1–ε)tE[e–αX]
- 考虑到 X = ∑ j = 1 t X j 2 \displaystyle{}X\text{=}\sum_{j=1}^tX_j^2 X=j=1∑tXj2,所以 E [ e – α X ] =E [ e – α ( X 1 2 + X 2 2 + ⋯ + X t 2 ) ] =E [ e – α X 1 2 e – α X 2 2 ⋯ e – α X t 2 ] =E [ ∏ j = 1 t e – α X j 2 ] = ∏ j = 1 t E [ e – α X j 2 ] \displaystyle{}\text{E}\left[e^{–\alpha{}X}\right]\text{=}\text{E}\left[e^{–\alpha{}(X^2_1\text{+}X^2_2\text{+}\cdots\text{+}X^2_t)}\right]\text{=}\text{E}\left[e^{–\alpha{}X^2_1}e^{–\alpha{}X^2_2}\cdots{}e^{–\alpha{}X^2_t}\right]\text{=}\text{E}\left[\prod_{j=1}^te^{–\alpha{}X_j^2}\right]\text{=}\prod_{j=1}^t\text{E}\left[e^{–\alpha{}X_j^2}\right] E[e–αX]=E[e–α(X12+X22+⋯+Xt2)]=E[e–αX12e–αX22⋯e–αXt2]=E[j=1∏te–αXj2]=j=1∏tE[e–αXj2]
- 在引理 1 1 1中已经证明 E [ e – α X j 2 ] = 1 1 + 2 α σ 2 ( α >– 1 2 σ 2 ) \text{E}\left[e^{–\alpha{}X_j^{2}}\right]\text{=}\cfrac{1}{\sqrt{1\text{+}2\alpha{}\sigma^{2}}}(\alpha{}\text{>}–\cfrac{1}{2\sigma^{2}}) E[e–αXj2]=1+2ασ21(α>–2σ21),考虑到此处 σ ( X j ) = 1 \sigma({X_j})\text{=}1 σ(Xj)=1所以 E [ e – α X j 2 ] = 1 1 + 2 α ( α >– 1 2 ) \text{E}\left[e^{–\alpha{}X_j^{2}}\right]\text{=}\cfrac{1}{\sqrt{1\text{+}2\alpha{}}}(\alpha{}\text{>}–\cfrac{1}{2}) E[e–αXj2]=1+2α1(α>–21)
- 所以 E [ e – α X ] = ∏ j = 1 t ( 1 1 + 2 α ) = ( 1 1 + 2 α ) t = 1 ( 1 + 2 α ) t 2 \displaystyle{}\text{E}\left[e^{–\alpha{}X}\right]\text{=}\prod_{j=1}^t\left(\cfrac{1}{\sqrt{1\text{+}2\alpha{}}}\right)\text{=}\left(\cfrac{1}{\sqrt{1\text{+}2\alpha{}}}\right)^t\text{=}\cfrac{1}{(1\text{+}2\alpha)^{\frac{t}{2}}} E[e–αX]=j=1∏t(1+2α1)=(1+2α1)t=(1+2α)2t1
- 代入原式得 Pr [ – X ≥– ( 1 – ε ) t ] ≤ E [ e – α X ] e – α ( 1 – ε ) t = ( 1 + 2 α ) – t 2 e – α ( 1 – ε ) t = ( e 2 ( 1 – ε ) α 1 + 2 α ) t 2 \text{Pr}\left[–X\text{≥}–(1\text{–}\varepsilon{})t\right]\text{≤}\cfrac{\text{E}\left[e^{–\alpha{}X}\right]}{e^{–\alpha{}(1–\varepsilon{})t}}\text{=}\cfrac{{(1\text{+}2\alpha)^{–\frac{t}{2}}}}{e^{–\alpha{}(1–\varepsilon{})t}}\text{=}\left(\cfrac{e^{2(1–\varepsilon)\alpha}}{1\text{+}2\alpha}\right)^{\frac{t}{2}} Pr[–X≥–(1–ε)t]≤e–α(1–ε)tE[e–αX]=e–α(1–ε)t(1+2α)–2t=(1+2αe2(1–ε)α)2t
↪对于 Pr [ – X ≥– ( 1 – ε ) t ] ≤ ( e 2 ( 1 – ε ) α 1 + 2 α ) t 2 \text{Pr}\left[–X\text{≥}–(1\text{–}\varepsilon{})t\right]\text{≤}\left(\cfrac{e^{2(1–\varepsilon)\alpha}}{1\text{+}2\alpha}\right)^{\frac{t}{2}} Pr[–X≥–(1–ε)t]≤(1+2αe2(1–ε)α)2t,有必要在 α >– 1 2 \alpha{}\text{>}–\cfrac{1}{2} α>–21的范围内确定 f ( α ) = ( e 2 ( 1 – ε ) α 1 + 2 α ) t 2 f(\alpha)\text{=}\left(\cfrac{e^{2(1–\varepsilon)\alpha}}{1\text{+}2\alpha}\right)^{\frac{t}{2}} f(α)=(1+2αe2(1–ε)α)2t的最小值
- 对于 ln ( f ( α ) ) = t 2 [ 2 ( 1 – ε ) α – ln ( 1 + 2 α ) ] \ln(f(\alpha))\text{=}\cfrac{t}{2}[2(1–\varepsilon)\alpha–\ln(1\text{+}2\alpha)] ln(f(α))=2t[2(1–ε)α–ln(1+2α)],令 g ( α ) = [ 2 ( 1 – ε ) α – ln ( 1 + 2 α ) ] g(\alpha)\text{=}[2(1–\varepsilon)\alpha–\ln(1\text{+}2\alpha)] g(α)=[2(1–ε)α–ln(1+2α)],如下图( ε =– 1 3 \varepsilon\text{=}–\cfrac{1}{3} ε=–31)
- 一阶导 d g ( α ) d α =– 2 1 + 2 α + 2 ( 1 + ε ) \cfrac{\text{d}g{(\alpha)}}{\text{d}\alpha}\text{=}–\cfrac{2}{1\text{+}2\alpha}\text{+}2(1\text{+}\varepsilon) dαdg(α)=–1+2α2+2(1+ε),具有临界点 α ∗ = ε 2 ( 1 – ε ) ∈ ( – 1 2 , +∞ ) \alpha^*\text{=}\cfrac{\varepsilon}{2(1–\varepsilon)}\text{∈}\left(–\cfrac{1}{2},\text{+∞}\right) α∗=2(1–ε)ε∈(–21,+∞),故 – 1 < ε < 1 –1\text{<}\varepsilon\text{<}1 –1<ε<1(由于前提限制故截取为 0 < ε < 1 0\text{<}\varepsilon\text{<}1 0<ε<1)
- 代入原式即得 Pr [ – X ≥– ( 1 – ε ) t ] ≤ ( e 2 ( 1 – ε ) α 1 + 2 α ) t 2 ≤ ( ( 1 – ε ) e ε ) t 2 \text{Pr}\left[–X\text{≥}–(1\text{–}\varepsilon{})t\right]\text{≤}\left(\cfrac{e^{2(1–\varepsilon)\alpha}}{1\text{+}2\alpha}\right)^{\frac{t}{2}}\text{≤}\left((1–\varepsilon) e^{\varepsilon}\right)^{\frac{t}{2}} Pr[–X≥–(1–ε)t]≤(1+2αe2(1–ε)α)2t≤((1–ε)eε)2t
↪进一步对 h ( ε ) = ( ( 1 – ε ) e ε ) t 2 h(\varepsilon)\text{=}\left((1–\varepsilon) e^{\varepsilon}\right)^{\frac{t}{2}} h(ε)=((1–ε)eε)2t的分析
- 泰勒展开 ln ( 1 – ε ) =– ε – ε 2 2 – ε 3 3 + O ( ε 4 ) \ln{}(1–\varepsilon)\text{=}–\varepsilon–\cfrac{\varepsilon^2}{2}–\cfrac{\varepsilon^3}{3}\text{+}O\left(\varepsilon^4\right) ln(1–ε)=–ε–2ε2–3ε3+O(ε4),则 ln ( 1 – ε ) + ε ≤– ε 2 2 – ε 3 3 ≤– 1 2 ( ε 2 – ε 3 ) \ln(1–\varepsilon)\text{+}\varepsilon\text{≤}–\cfrac{\varepsilon^2}{2}–\cfrac{\varepsilon^3}{3}\text{≤}–\cfrac{1}{2}\left(\varepsilon^2–\varepsilon^3\right) ln(1–ε)+ε≤–2ε2–3ε3≤–21(ε2–ε3)
- 故在 ln ( h ( ε ) ) = t 2 ( ln ( 1 – ε ) + ε ) ≤– t 4 ( ε 2 – ε 3 ) \ln(h(\varepsilon))\text{=}\cfrac{t}{2}(\ln(1–\varepsilon)\text{+}\varepsilon)\text{≤}–\cfrac{t}{4}\left(\varepsilon^2–\varepsilon^3\right) ln(h(ε))=2t(ln(1–ε)+ε)≤–4t(ε2–ε3),即 h ( ε ) ≤ e – t 4 ( ε 2 – ε 3 ) h(\varepsilon)\text{≤}e^{–\frac{t}{4}\left(\varepsilon^2–\varepsilon^3\right)} h(ε)≤e–4t(ε2–ε3)
↪最后 Pr [ ∥ u ′ ∥ 2 ≤ ( 1 – ε ) ∥ u ∥ 2 ] =Pr [ – X ≥– ( 1 – ε ) t ] ≤ ( e 2 ( 1 – ε ) α 1 + 2 α ) t 2 ≤ ( ( 1 – ε ) e ε ) t 2 ≤ e – t 4 ( ε 2 – ε 3 ) \text{Pr}\left[\left\|u^{\prime}\right\|^2\text{≤}(1\text{–}\varepsilon)\|u\|^2\right]\text{=}\text{Pr}\left[–X\text{≥}–(1\text{–}\varepsilon{})t\right]\text{≤}\left(\cfrac{e^{2(1–\varepsilon)\alpha}}{1\text{+}2\alpha}\right)^{\frac{t}{2}}\text{≤}\left((1–\varepsilon) e^{\varepsilon}\right)^{\frac{t}{2}}\text{≤}e^{–\frac{t}{4}\left(\varepsilon^2–\varepsilon^3\right)} Pr[∥u′∥2≤(1–ε)∥u∥2]=Pr[–X≥–(1–ε)t]≤(1+2αe2(1–ε)α)2t≤((1–ε)eε)2t≤e–4t(ε2–ε3)