【深度学习基础】多层感知机 | 权重衰减

在这里插入图片描述

【作者主页】Francek Chen
【专栏介绍】 ⌈ ⌈ PyTorch深度学习 ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据分析、科学探索等领域都取得了很多成果。本专栏介绍基于PyTorch的深度学习算法实现。
【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/PyTorch_deep_learning。

文章目录

    • 一、范数与权重衰减
    • 二、高维线性回归
    • 三、权重衰减的从零开始实现
    • 四、权重衰减的简洁实现
    • 小结


  前一节我们描述了过拟合的问题,本节我们将介绍一些正则化模型的技术。我们总是可以通过去收集更多的训练数据来缓解过拟合。但这可能成本很高,耗时颇多,或者完全超出我们的控制,因而在短期内不可能做到。假设我们已经拥有尽可能多的高质量数据,我们便可以将重点放在正则化技术上。

  回想一下,在多项式回归的例子(模型选择、欠拟合和过拟合)中,我们可以通过调整拟合多项式的阶数来限制模型的容量。实际上,限制特征的数量是缓解过拟合的一种常用技术。然而,简单地丢弃特征对这项工作来说可能过于生硬。我们继续思考多项式回归的例子,考虑高维输入可能发生的情况。多项式对多变量数据的自然扩展称为单项式(monomials),也可以说是变量幂的乘积。单项式的阶数是幂的和。例如, x 1 2 x 2 x_1^2 x_2 x12x2 x 3 x 5 2 x_3 x_5^2 x3x52都是3次单项式。

  注意,随着阶数 d d d的增长,带有阶数 d d d的项数迅速增加。 给定 k k k个变量,阶数为 d d d的项的个数为 ( k − 1 + d k − 1 ) {k - 1 + d} \choose {k - 1} (k1k1+d),即 C k − 1 + d k − 1 = ( k − 1 + d ) ! ( d ) ! ( k − 1 ) ! C^{k-1}_{k-1+d} = \frac{(k-1+d)!}{(d)!(k-1)!} Ck1+dk1=(d)!(k1)!(k1+d)!。因此即使是阶数上的微小变化,比如从 2 2 2 3 3 3,也会显著增加我们模型的复杂性。仅仅通过简单的限制特征数量(在多项式回归中体现为限制阶数),可能仍然使模型在过简单和过复杂中徘徊,我们需要一个更细粒度的工具来调整函数的复杂性,使其达到一个合适的平衡位置。

一、范数与权重衰减

  在【深度学习基础】预备知识 | 线性代数 中,我们已经描述了 L 2 L_2 L2范数和 L 1 L_1 L1范数,它们是更为一般的 L p L_p Lp范数的特殊情况。

  在训练参数化机器学习模型时,权重衰减(weight decay)是最广泛使用的正则化的技术之一,它通常也被称为 L 2 L_2 L2正则化。这项技术通过函数与零的距离来衡量函数的复杂度,因为在所有函数 f f f中,函数 f = 0 f = 0 f=0(所有输入都得到值 0 0 0)在某种意义上是最简单的。但是我们应该如何精确地测量一个函数和零之间的距离呢?没有一个正确的答案。事实上,函数分析和巴拿赫空间理论的研究,都在致力于回答这个问题。

  一种简单的方法是通过线性函数 f ( x ) = w ⊤ x f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} f(x)=wx中的权重向量的某个范数来度量其复杂性,例如 ∥ w ∥ 2 \| \mathbf{w} \|^2 w2。要保证权重向量比较小,最常用方法是将其范数作为惩罚项加到最小化损失的问题中。将原来的训练目标最小化训练标签上的预测损失,调整为最小化预测损失和惩罚项之和。现在,如果我们的权重向量增长的太大,我们的学习算法可能会更集中于最小化权重范数 ∥ w ∥ 2 \| \mathbf{w} \|^2 w2。这正是我们想要的。让我们回顾一下【深度学习基础】线性神经网络 | 线性回归 中的线性回归例子。我们的损失由下式给出:
L ( w , b ) = 1 n ∑ i = 1 n 1 2 ( w ⊤ x ( i ) + b − y ( i ) ) 2 (1) L(\mathbf{w}, b) = \frac{1}{n}\sum_{i=1}^n \frac{1}{2}\left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right)^2 \tag{1} L(w,b)=n1i=1n21(wx(i)+by(i))2(1)

  回想一下, x ( i ) \mathbf{x}^{(i)} x(i)是样本 i i i的特征, y ( i ) y^{(i)} y(i)是样本 i i i的标签, ( w , b ) (\mathbf{w}, b) (w,b)是权重和偏置参数。为了惩罚权重向量的大小,我们必须以某种方式在损失函数中添加 ∥ w ∥ 2 \| \mathbf{w} \|^2 w2,但是模型应该如何平衡这个新的额外惩罚的损失?实际上,我们通过正则化常数 λ \lambda λ来描述这种权衡,这是一个非负超参数,我们使用验证数据拟合:
L ( w , b ) + λ 2 ∥ w ∥ 2 (2) L(\mathbf{w}, b) + \frac{\lambda}{2} \|\mathbf{w}\|^2 \tag{2} L(w,b)+2λw2(2)

  对于 λ = 0 \lambda = 0 λ=0,我们恢复了原来的损失函数。对于 λ > 0 \lambda > 0 λ>0,我们限制 ∥ w ∥ \| \mathbf{w} \| w的大小。这里我们仍然除以 2 2 2:当我们取一个二次函数的导数时, 2 2 2 1 / 2 1/2 1/2会抵消,以确保更新表达式看起来既漂亮又简单。为什么在这里我们使用平方范数而不是标准范数(即欧几里得距离)?我们这样做是为了便于计算。通过平方 L 2 L_2 L2范数,我们去掉平方根,留下权重向量每个分量的平方和。这使得惩罚的导数很容易计算:导数的和等于和的导数。

  此外,为什么我们首先使用 L 2 L_2 L2范数,而不是 L 1 L_1 L1范数。事实上,这个选择在整个统计领域中都是有效的和受欢迎的。 L 2 L_2 L2正则化线性模型构成经典的岭回归(ridge regression)算法, L 1 L_1 L1正则化线性回归是统计学中类似的基本模型,通常被称为套索回归(lasso regression)。使用 L 2 L_2 L2范数的一个原因是它对权重向量的大分量施加了巨大的惩罚。这使得我们的学习算法偏向于在大量特征上均匀分布权重的模型。在实践中,这可能使它们对单个变量中的观测误差更为稳定。相比之下, L 1 L_1 L1惩罚会导致模型将权重集中在一小部分特征上,而将其他权重清除为零。这称为特征选择(feature selection),这可能是其他场景下需要的。

  使用与随机梯度下降中的相同符号, L 2 L_2 L2正则化回归的小批量随机梯度下降更新如下式:
w ← ( 1 − η λ ) w − η ∣ B ∣ ∑ i ∈ B x ( i ) ( w ⊤ x ( i ) + b − y ( i ) ) (3) \begin{aligned} \mathbf{w} & \leftarrow \left(1- \eta\lambda \right) \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \mathbf{x}^{(i)} \left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right) \tag{3} \end{aligned} w(1ηλ)wBηiBx(i)(wx(i)+by(i))(3)

  根据之前章节所讲的,我们根据估计值与观测值之间的差异来更新 w \mathbf{w} w。然而,我们同时也在试图将 w \mathbf{w} w的大小缩小到零。这就是为什么这种方法有时被称为权重衰减。我们仅考虑惩罚项,优化算法在训练的每一步衰减权重。与特征选择相比,权重衰减为我们提供了一种连续的机制来调整函数的复杂度。较小的 λ \lambda λ值对应较少约束的 w \mathbf{w} w,而较大的 λ \lambda λ值对 w \mathbf{w} w的约束更大。

  是否对相应的偏置 b 2 b^2 b2进行惩罚在不同的实践中会有所不同,在神经网络的不同层中也会有所不同。通常,网络输出层的偏置项不会被正则化。

二、高维线性回归

  我们通过一个简单的例子来演示权重衰减。

%matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l

  首先,我们像以前一样生成一些数据,生成公式如下:
y = 0.05 + ∑ i = 1 d 0.01 x i + ϵ , 其中 ϵ ∼ N ( 0 , 0.0 1 2 ) (4) y = 0.05 + \sum_{i = 1}^d 0.01 x_i + \epsilon, \quad \text{其中} \epsilon \sim \mathcal{N}(0, 0.01^2) \tag{4} y=0.05+i=1d0.01xi+ϵ,其中ϵN(0,0.012)(4)

  我们选择标签是关于输入的线性函数。标签同时被均值为0,标准差为0.01高斯噪声破坏。为了使过拟合的效果更加明显,我们可以将问题的维数增加到 d = 200 d = 200 d=200,并使用一个只包含20个样本的小训练集。

n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)

三、权重衰减的从零开始实现

  下面我们将从头开始实现权重衰减,只需将 L 2 L_2 L2的平方惩罚添加到原始目标函数中。

(一)初始化模型参数

  首先,我们将定义一个函数来随机初始化模型参数。

def init_params():w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)b = torch.zeros(1, requires_grad=True)return [w, b]

(二)定义 L 2 L_2 L2范数惩罚

  实现这一惩罚最方便的方法是对所有项求平方后并将它们求和。

def l2_penalty(w):return torch.sum(w.pow(2)) / 2

(三)定义训练代码实现

  下面的代码将模型拟合训练数据集,并在测试数据集上进行评估。从线性神经网络以来,线性网络和平方损失没有变化,所以我们通过d2l.linregd2l.squared_loss导入它们。唯一的变化是损失现在包括了惩罚项。

def train(lambd):w, b = init_params()net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_lossnum_epochs, lr = 100, 0.003animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])for epoch in range(num_epochs):for X, y in train_iter:# 增加了L2范数惩罚项,# 广播机制使l2_penalty(w)成为一个长度为batch_size的向量l = loss(net(X), y) + lambd * l2_penalty(w)l.sum().backward()d2l.sgd([w, b], lr, batch_size)if (epoch + 1) % 5 == 0:animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))print('w的L2范数是:', torch.norm(w).item())

(四)忽略正则化直接训练

  我们现在用lambd = 0禁用权重衰减后运行这个代码。注意,这里训练误差有了减少,但测试误差没有减少,这意味着出现了严重的过拟合。

train(lambd=0)

在这里插入图片描述
在这里插入图片描述

(五)使用权重衰减

  下面,我们使用权重衰减来运行代码。注意,在这里训练误差增大,但测试误差减小。这正是我们期望从正则化中得到的效果。

train(lambd=3)

在这里插入图片描述
在这里插入图片描述

四、权重衰减的简洁实现

  由于权重衰减在神经网络优化中很常用,深度学习框架为了便于我们使用权重衰减,将权重衰减集成到优化算法中,以便与任何损失函数结合使用。此外,这种集成还有计算上的好处,允许在不增加任何额外的计算开销的情况下向算法中添加权重衰减。由于更新的权重衰减部分仅依赖于每个参数的当前值,因此优化器必须至少接触每个参数一次。

  在下面的代码中,我们在实例化优化器时直接通过weight_decay指定weight decay超参数。默认情况下,PyTorch同时衰减权重和偏移。这里我们只为权重设置了weight_decay,所以偏置参数 b b b不会衰减。

def train_concise(wd):net = nn.Sequential(nn.Linear(num_inputs, 1))for param in net.parameters():param.data.normal_()loss = nn.MSELoss(reduction='none')num_epochs, lr = 100, 0.003# 偏置参数没有衰减trainer = torch.optim.SGD([{"params":net[0].weight,'weight_decay': wd}, {"params":net[0].bias}], lr=lr)animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test'])for epoch in range(num_epochs):for X, y in train_iter:trainer.zero_grad()l = loss(net(X), y)l.mean().backward()trainer.step()if (epoch + 1) % 5 == 0:animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))print('w的L2范数:', net[0].weight.norm().item())

  这些图看起来和我们从零开始实现权重衰减时的图相同。然而,它们运行得更快,更容易实现。对于更复杂的问题,这一好处将变得更加明显。

train_concise(0)

在这里插入图片描述
在这里插入图片描述

train_concise(3)

在这里插入图片描述
在这里插入图片描述

  到目前为止,我们只接触到一个简单线性函数的概念。此外,由什么构成一个简单的非线性函数可能是一个更复杂的问题。例如,再生核希尔伯特空间(RKHS)允许在非线性环境中应用为线性函数引入的工具。不幸的是,基于RKHS的算法往往难以应用到大型、高维的数据。在本专栏中,我们将默认使用简单的启发式方法,即在深层网络的所有层上应用权重衰减。

小结

  • 正则化是处理过拟合的常用方法:在训练集的损失函数中加入惩罚项,以降低学习到的模型的复杂度。
  • 保持模型简单的一个特别的选择是使用 L 2 L_2 L2惩罚的权重衰减。这会导致学习算法更新步骤中的权重衰减。
  • 权重衰减功能在深度学习框架的优化器中提供。
  • 在同一训练代码实现中,不同的参数集可以有不同的更新行为。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/67832.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

实现酷炫粒子背景效果

使用 particles.vue3 实现酷炫粒子背景效果 在这篇博客中,我们将介绍如何使用 particles.vue3 实现动态粒子背景,并详细讲解其配置参数和常见问题的解决方法。通过本文,你可以轻松在项目中应用并自定义粒子效果。 什么是 particles.vue3&am…

ubuntu16.04 VSCode下cmake+clang+lldb调试c++

VSCode下cmakeclanglldb调试c Ubuntu16.04 安装OpenCV4.5.4 文章目录 VSCode下cmakeclanglldb调试c1.安装clangclangdcmake2、打开VSCode,安装扩展插件3、编译4、Debug4.1 创建launch.json。4.2 配置setting.json 5. vscode安装配置clang-format插件5.1 Linux系统安…

在vue3中使用datav完整引入时卡在加载页面的解决方法

文件修改 文件:node_modules/dataview\datav-vue3/package.json // "module": "./es/index.js","module": "./es/index.mjs", // 修改后使用完整引入,需要为datav配置文件添加相应方法 文件:node…

AI agent 在 6G 网络应用,无人机群控场景

AI agent 在 6G 网络应用,无人机群控场景 随着 6G 时代的临近,融合人工智能成为关键趋势。借鉴 IT 行业 AI Agent 应用范式,提出 6G AI Agent 技术框架,包含多模型融合、定制化 Agent 和插件式环境交互理念,构建了涵盖四层结构的框架。通过各层协同实现自主环境感知等能力…

跨境电商SEO起步:关键词研究方法

SEO的重要性和必要性不言而喻,而在SEO的各大流程中,关键词研究同样重要,因为它在网站内容优化、产品标题和描述优化等方面都发挥重要作用。 一、从消费者视角出发 SEO是为了增加让消费者看到自己产品的可能性,因此要从消费者搜索…

开发环境搭建-1:配置 WSL (类 centos 的 oracle linux 官方镜像)

一些 Linux 基本概念 个人理解,并且为了便于理解,可能会存在一些问题,如果有根本上的错误希望大家及时指出 发行版 WSL 的系统是基于特定发行版的特定版本的 Linux 发行版 有固定组织维护的、开箱就能用的 Linux 发行版由固定的团队、社区…

【三维分割】Gaga:通过3D感知的 Memory Bank 分组任意高斯

文章目录 摘要一、引言二、主要方法2.1 3D-aware Memory Bank2.2 三维分割的渲染与下游应用 三、实验消融实验应用: Scene Manipulation 地址:https://www.gaga.gallery 标题:Gaga: Group Any Gaussians via 3D-aware Memory Bank 来源:加利福…

UE5 开启“Python Remote Execution“

demo 代码 remote_execution.py 远程调用UE5 python代码-CSDN博客 在启用 Unreal Engine 5(UE5)的“Python 远程执行”功能后,UE5 会启动一个 UDP 组播套接字服务,以监听来自外部应用程序的 Python 命令。 具体行为如下&#xf…

TangoFlux 本地部署实用教程:开启无限音频创意脑洞

一、介绍 TangoFlux是通过流匹配和 Clap-Ranked 首选项优化,实现超快速、忠实的文本到音频生成的模型。 本模型由 Stability AI 提供支持🚀 TangoFlux 可以在单个 A40 GPU 上在 ~3 秒内生成长达 34.1kHz 的立体声音频。 二、部署 安装方式非常简单 1…

Python数据类型间的转换及eval函数

1.数据类型间的转换 x 10 y 3 z x / y # 除法运算,将运算的结果赋值给z print(z,type(z)) # 隐式转换,通过运算隐式地传了结果的类型# float类型转换为int类型,只保留整数部分,不会进行四舍五入 print(int(3.1542)) print(i…

influxdb+grafana+jmeter

influxdb influxd先启动 启动完成后执行 influxdb的端口号 grafana的启动 通过grafana-server.exe启动grafana 启动后打开 http://localhost:8087/

GeekHour

Linux Linux的是类Unix系统,作者是Linus,也是git的作者。符合GPL(General Public License)就可以Linux的使用、修改、再发布。 Linux四部分: 内核:驱动、内存管理、进程管理、文件系统、网络协议栈…。作…

【SpringCloud】黑马微服务学习笔记

目录 1. 关于微服务 ?1.1 微服务与单体架构的区别 ?1.2 SpringCloud 技术 2. 学习前准备 ?2.1 环境搭建 ?2.2 熟悉项目 3. 正式拆分 ?3.1 拆分商品功能模块 ?3.2 拆分购物车功能模块 4. 服务调用 ?4.1 介绍 ?4.2 RustTemplate?的使用 4.3 服务治理-注册中…

安装matlab2024a错误license checkout failed Error-8

问题: 忘记截图了,借用博主的图片。 记得安装过程中,目标网址才是你的安装地址,而不是前面的安装包地址。 解决方法: 1.将破解文件中"Crack\R2020a\bin\win64\matlab_startup_plugins\lmgrimpl"目录下的l…

gitlab使用多数据库

1. 说明 默认情况下,GitLab 使用一个单一的应用数据库,称为主数据库。为了扩展 GitLab,您可以将 GitLab 配置为使用多个应用数据库。 设置多个数据库后,GitLab 将使用第二个应用数据库用于 CI/CD 功能,称为 CI 数据库…

常用排序算法之插入排序

目录 前言 一、基本原理 1.算法步骤 2.动画演示 3.插入排序的实现代码 二、插入排序的时间复杂度 1. 时间复杂度 1.最优时间复杂度 2.最差时间复杂度 3.平均时间复杂度 2. 空间复杂度 三、插入排序的优缺点 1.优点 2.缺点 四、插入排序的改进与变种 五、插入排…

【机器学习实战入门】使用OpenCV进行性别和年龄检测

Gender and Age Detection Python 项目 首先,向您介绍用于此高级 Python 项目的性别和年龄检测中的术语: 什么是计算机视觉? 计算机视觉是一门让计算机能够像人类一样观察和识别数字图像和视频的学科。它面临的挑战大多源于对生物视觉有限的了解。计算机视觉涉及获取、处…

python爬虫的学习流程(1-前提准备)

这里主要记录一下我的python爬虫初级的学习的流程 1.python爬虫入门实战课 什么是爬虫?众说纷纭,我们引用维基百科上对网络爬虫的介绍: 网络爬虫(英语:Web crawler),也叫网络蜘蛛(…

PyTorch使用教程(13)-一文搞定模型的可视化和训练过程监控

一、简介 在现代深度学习的研究和开发中,模型的可视化和监控是不可或缺的一部分。PyTorch,作为一个流行的深度学习框架,通过其丰富的生态系统提供了多种工具来满足这一需求。其中,torch.utils.tensorboard 是一个强大的接口&…

学习ASP.NET Core的身份认证(基于JwtBearer的身份认证6)

重新创建WebApi项目,安装Microsoft.AspNetCore.Authentication.JwtBearer包,将之前JwtBearer测试项目中的初始化函数,jwt配置类、token生成类全部挪到项目中。   重新编写login函数,之前测试Cookie和Session认证时用的函数适合m…