人工智能大模型应用指南

  大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。

  本文主要介绍了人工智能大模型应用指南,从入门到精通的AI实践教程,希望能对学习大模型的同学们有所帮助。

文章目录

  • 1. 前言
  • 2. 书籍推荐
    • 2.1 本书特色
    • 2.2 内容简介
    • 2.3 本书作者
    • 2.4 本书目录
    • 2.5 适合读者

1. 前言

  在20世纪末和21世纪初,人类经历了两次信息革命的浪潮。

  • 第一次是互联网时代的兴起,将世界各地连接在一起,改变了人们获取信息和交流的方式。

  • 第二次则是移动互联网时代的到来,智能手机和移动应用程序的普及使人们可以随时随地与他人交流、获取信息和进行商务活动。

  然而,随着技术的不断演进和人类社会的不断发展,我们正站在另一个信息时代的门槛上。这是一个更加智能化、更加联系紧密的时代,它将重新定义我们与世界互动的方式,塑造我们的生活、工作和社会关系。

  2022年11月30日,OpenAI发布了ChatGPT:一个基于生成式预训练Transformer (Generative Pre-trained Transformer,GPT)技术的语言模型。

  一经发布,ChatGPT 就在市场上引起了强烈反响,月活跃用户数在接下来的两个月迅速突破一亿,打破了互联网行业的用户增长纪录,成为史上增长最快的消费者应用。

  然而,ChatGPT的出现只是一个开端。

  随后,GPT-4、Alpaca、Bard、 ChatGLM、LLaMA、 Claude、Gemini等大语言模型相继问世,呈现出百花齐放的局面。

  这一趋势预示着未来将会有更多的大语言模型涌现,为消费者提供更丰富的体验,进而改变我们与科技互动的方式。

  这一变革的兴奋之处在于,我们或许正处在人类历史上的第四次工业革命的起始阶段。

  这一次,不再是机械化、电气化带来的变革,而是智能化、自动化的革命,将重塑人类社会的方方面面。

  然而,这种变革也带来了焦虑。

  大语言模型的广泛应用将极大地改变各行各业,特别是泛内容产业的规则、生态和格局。

  泛内容产业是一个多元化的领域,包括但不限于编程与软件开发、自媒体与内容创作、娱乐内容制作和传播、游戏开发和运营以及教育内容制作和传播等。

  这些领域将面临前所未有的挑战和机遇,需要不断调整和创新,以适应智能时代的到来。

  2023年11月,OpenAI的创始成员Andrej Karpathy提出了一个引人入胜的观点:未来,大语言模型极有可能发展到与当前计算机操作系统的地位相当。

  他形象地比喻说,我们可以将大语言模型及其周边生态系统看作一种崭新的操作系统。

  大语言模型就像计算机中的中央处理器,它的批处理大小相当于CPU的核心数,而每秒处理的 token数量则相当于CPU的主频,以Hz为单位。这些参数决定了模型的计算能力和处理速度。而语言模型的上下文窗口大小则相当于计算机的内存大小,它决定了模型能够同时考虑的信息量和短期记忆的大小。

  外部数据在语言模型中扮演着长期记忆的角色,类似于计算机的磁盘。这些外部数据的组织方式就像计算机磁盘中的文件系统一样,它们存储和管理着模型需要的信息,供其随时调取。此外,语言模型接收和输出的文本、音频、视频相当于计算机的输入输出设备,它们是模型与外界交互的媒介。

  最后,大语言模型不仅可以与其他模型进行网络通信,还能够通过浏览器访问互联网上的信息,以及利用外部工具执行传统的计算机操作。这种广泛的联接和应用使得语言模型在信息处理和应用方面具有了前所未有的能力和灵活性。

  LLM as OS, Agents as Apps: Envisioning AIOS, Agents and the AIOS-Agent Ecosystem_论文的作者也持有与Andrej Karpathy 相似的观点。

  在这篇论文中,作者提出了 AIOS-Agent 生态系统的概念,并将其与现今的操作系统(OS) -应用程序(App)生态系统进行了比较。下面展示了它们之间的类比关系。

  未来,大语言模型很有可能以这种全新形态融入人类的日常生活和工作中。人类将从移动互联网时代迈入智能时代,应用的载体也将由应用程序逐渐转变为基于大语言模型的智能体。

2. 书籍推荐

  未来,大语言模型极有可能发展到与当前计算机操作系统的地位相当,因此,应用大语言模型可以说是每个人不可或缺的技能。

  《大语言模型应用指南:以ChatGPT为起点,从入门到精通的AI实践教程(全彩)》 一书将帮助大家更好地理解和使用大语言模型,即使你对人工智能技术或编程技术一窍不通,也不用担心。本书将用通俗易懂的语言和例子,讲述大语言模型的基本原理、基础使用方法和进阶开发技巧。

2.1 本书特色

  本书是一本对人工智能小白读者非常友好的大语言模型应用指南,有两大特点:

  • 一是以通俗易懂的方式解释复杂概念,通过实例和案例讲解大语言模型的工作原理和工作流程、基本使用方法,包括大语言模型常用的三种交互格式、提示工程、工作记忆与长短期记忆,以及外部工具等,使读者能够全面了解和掌握这一先进技术的应用和二次开发;

  • 二是紧跟当前大语言模型技术的更新动态,介绍GPTs的创建,以GPT-4V和Gemini为例讲述多模态模型的应用,还包括无梯度优化、自主Agent系统、大语言模型微调、RAG框架微调、大语言模型安全技术等。

2.2 内容简介

  本书的读者对象是大语言模型的使用者和应用开发者,全书共分为4篇。

  • 第1篇讲述机器学习、神经网络的基本概念,自然语言处理的发展历程,以及大语言模型的基本原理。鉴于本书的重点在于大语言模型的应用和二次开发,因此本书将不涉及大语言模型的训练细节。然而,我们仍强烈建议读者熟悉每个关键术语的含义,并了解大语言模型的工作流程,以更好地理解后面的内容。

  • 第2篇讲述大语言模型的基础应用技巧。首先,介绍大语言模型常用的3种交互格式。随后,深入讲解提示工程、工作记忆与长短期记忆,以及外部工具等与大语言模型使用相关的概念。最后,对大语言模型生态系统中的关键参与者——ChatGPT的接口与扩展功能进行详解。

  • 第3篇讲述大语言模型的进阶应用技巧。首先,介绍如何将大语言模型应用于无梯度优化,从而拓宽大语言模型的应用领域。随后,详细讨论各类基于大语言模型的自主Agent系统,以及微调的基本原理。最后,介绍与大语言模型相关的安全技术。

  • 第4篇讲述大语言模型的未来。一方面,探讨大语言模型的生态系统和前景,简要介绍多模态大语言模型和相关的提示工程。另一方面,深入解析大语言模型的尺度定律,并尝试从无损压缩的角度来解析大语言模型具备智能的原因,最后以图灵机与大语言模型的联系作为全书的结尾。

2.3 本书作者

  万俊,南京大学计算数学专业本硕;现任中国香港瑞银软件工程师;OPPO前高级数据挖掘工程师 ;蚂蚁集团前高级机器学习、数据工程师 ;Udacity前机器学习和深度学习资深讲师;曾多次在各类数据竞赛中获奖(Kaggle Kesci Data Castle);已发表CCF A类论文一篇,EI论文一篇,神经网络测试专利一个 ;LeetCode专栏作家,著有“Enlighten AI”专栏。

2.4 本书目录

1篇 基础
第1章 从人工智能的起源到大语言模型 2
11 人工智能的起源 2
111 机器能思考吗 2
112 达特茅斯会议 3
12 什么是机器学习 4
121 演绎推理与归纳推理 4
122 人工编程与自动编程 5
123 机器学习的过程 5
124 机器学习的分类 8
13 什么是神经网络 9
131 还原论与涌现性 9
132 神经网络的发展历史 10
133 神经网络基础 11
134 神经网络的三要素 13
14 自然语言处理的发展历程 17
141 什么是自然语言处理 17
142 文本的向量化 18
143 神经网络中的自监督学习 21
15 大语言模型 24
151 什么是大语言模型 24
152 语言模型中的token 25
153 自回归模型与文本生成 33
154 统一自然语言任务 41
155 大语言模型的训练过程 44
156 大语言模型的局限性 462篇 入门
第2章 交互格式 50
21 Completion交互格式 50
22 ChatML交互格式 52
23 Chat Completion交互格式 543章 提示工程 57
31 什么是提示工程 57
32 提示的构成 58
33 提示的基础技巧 62
331 在提示的末尾重复关键指令 63
332 使用更清晰的语法 63
333 尽量使用示例 65
334 明确要求大语言模型回复高质量的响应 65
34 Chat Completion交互格式中的提示 65
35 提示模板与多轮对话 694章 工作记忆与长短期记忆 72
41 什么是工作记忆 72
42 减轻工作记忆的负担 74
421 Chain-of-Thought 74
422 Self-Consistency 76
423 Least-to-Most 76
424 Tree-of-Tought和Graph -of-Tought 79
425 Algorithm-of-Tought 85
426 Chain-of-Density 88
43 关于大语言模型的思考能力 90
44 长短期记忆 91
441 什么是记忆 91
442 短期记忆 92
443 长期记忆 1055章 外部工具 122
51 为什么需要外部工具 122
52 什么是外部工具 122
53 使用外部工具的基本原理 124
54 基于提示的工具 126
541 Self-ask 框架 126
542 ReAct 框架 128
543 改进ReAct框架 134
55 基于微调的工具 137
551 Toolformer 137
552 Gorilla 140
553 function calling 1416章 ChatGPT接口与扩展功能详解 149
61 OpenAI大语言模型简介 149
62 ChatGPT扩展功能原理 151
621 网页实时浏览 152
622 执行Python代码 153
623 图像生成 154
624 本地文件浏览 157
63 Chat Completion接口参数详解 158
631 模型响应返回的参数 158
632 向模型发起请求的参数 159
64 Assistants API 162
641 工具 162
642 线程 163
643 运行 163
644 Assistants API整体执行过程 164
65 GPTs与GPT商店 164
651 GPTs功能详解 165
652 GPT商店介绍 172
653 案例:私人邮件助手 1743篇 进阶
第7章 无梯度优化 184
71 单步优化 184
72 强化学习入门 188
73 多步优化中的预测 191
74 多步优化中的训练 194
75 多步优化中的训练和预测 2018章 自主Agent系统 210
81 自主Agent系统简介 210
82 自主Agent系统的基本组成 211
83 自主Agent系统案例分析(一) 213
831 BabyAGI 213
832 AutoGPT 216
833 BeeBot 221
834 Open Interpreter 228
835 MemGPT 232
84 自主Agent系统案例分析(二) 243
841 CAMEL 243
842 ChatEval 246
843 Generative Agents 2509章 微调 262
91 三类微调方法 262
92 Transformer解码器详解 264
921 Transformer的原始输入 264
922 静态编码和位置编码 264
923 Transformer层 265
93 高效参数微调 268
931 Adapter高效微调 268
932 Prompt高效微调 269
933 LoRA高效微调 272
934 高效微调总结 274
94 微调RAG框架 275
941 RAG框架微调概述 275
942 数据准备和参数微调 276
943 效果评估 27610章 大语言模型的安全技术 280
101 提示注入攻击 280
1011 攻击策略 281
1012 防御策略 284
102 越狱攻击与数据投毒 285
1021 冲突的目标与不匹配的泛化 285
1022 对抗样本 286
1023 数据投毒 289
103 幻觉和偏见问题 292
104 为大语言模型添加水印 2944篇 展望
第11章 大语言模型的生态与未来 298
111 多模态大语言模型 298
1111 什么是多模态 298
1112 GPT-4V简介 300
1113 Gemini简介 303
112 大语言模型的生态系统 308
113 大语言模型的第一性原理:尺度定律 311
1131 什么是尺度定律 312
1132 尺度定律的性质 313
1133 尺度定律的未来 320
114 通向通用人工智能:压缩即智能 321
1141 编码与无损压缩 322
1142 自回归与无损压缩 331
1143 无损压缩的极限 336
115 图灵机与大语言模型:可计算性与时间复杂度 342
1151 图灵机与神经网络 342
1152 智能的可计算性 346
1153 逻辑推理的时间复杂度 349
参考文献 352

2.5 适合读者

  无论是学术研究者、工程师,还是对大语言模型感兴趣的普通读者,都可以通过本书获得大语言模型的前沿研究成果、技术进展和应用案例,从而更好地应用大语言模型解决实际问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/6606.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

直流屏整流模块HG07A220R电源模块HG10A220R

直流屏整流模块HG07A220R电源模块HG10A220R 其他同类型监控模块PM09T电源模块HG22005/S,HG22010/S,HG11010/S,HG11020/S,HG10A220Z,HG10A220F,HG05A220Z,HG07A220Z,HG10A110Z&#x…

免费可商用字体素材大全,办公设计字体合集打包166款

一、素材描述 这是一套免费可商用字体素材,这些字体一般会在办公与设计的时候用到,比如,Photoshop、illustrator、Coreldraw、AfterEffects、Indesign、WPS、Office,等等,想要更好更快地办公与设计,字体还…

【Java】面向对象核心知识点(二),文章层次分明,内容精益求精,代码简单易懂

目录 一、构造方法 1.1 概念 1.2 作用 1.3 代码 二、抽象 2.1 概念 2.2 作用 2.3 注意 2.4 代码 三、接口 3.1 概念 3.2 作用 3.3 注意 3.4 语法 3.5 代码 四、内部类 4.1 成员内部类 4.2 局部内部类 4.3 静态内部类 4.4 匿名内部类 (原创文章&…

WWW‘24 | 课程学习CL+模仿学习IL用于ETF及商品期货交易

WWW24 | 课程学习CL模仿学习IL用于ETF及商品期货交易 原创 QuantML QuantML 2024-05-04 13:47 论文地址:[2311.13326] Curriculum Learning and Imitation Learning for Model-free Control on Financial Time-series (arxiv.org) 本文探讨了在金融时间序列数据上…

W801学习笔记十七:古诗学习应用——上

硬件驱动以及软件架构大体上已经完成,尚存一些遗漏之处,后续会寻找合适的时机进行补充。自此章起,将正式迈入软件应用阶段,尤其是游戏开发领域。 关于第一个应用,此前已有一些构想: 其一,随机…

【跟我学RISC-V】(二)RISC-V的基础知识学习与汇编练习

写在前面: 这篇文章是跟我学RISC-V的第二期,是第一期的延续,第一期主要是带大家了解一下什么是RISC-V,是比较大体、宽泛的概念。这一期主要是讲一些基础知识,然后进行RISC-V汇编语言与c语言的编程。在第一期里我们搭建了好几个环…

FBA头程空运发货流程详解|携手天图通逊,开启高效跨境物流之旅

在众多头程发货方式中,空运以其速度快、时效高的特点,成为许多卖家特别是急需快速补货或应对市场变化的友好选择,那FBA头程空运的发货流程是怎样的呢? 1、发货准备 在开始空运之前,首先需要进行发货准备。这包括将货物送达指定的…

DETR类型检测网络实验2---优化测试

补全reference_point Anchor-DETR提出用预定义的参考点生成query_pos; DBA-DETR提出预定义参考信息由(x,y)增至(x,y,w,h) 那么在3D检测任务中是否可以把预定义参考信息补全为(x,y,z,l,w,h,sint,cost),而query_pos都是使用xy两个维度(因为是bev网络). (这种方法在Sparse-DETR中…

轻松应对数据恢复挑战:雷神笔记本,不同情况不同策略

在数字化时代,数据无疑是我们生活中不可或缺的一部分。无论是重要的工作文件、珍贵的家庭照片,还是回忆满满的视频,一旦丢失,都可能给我们的生活带来诸多不便。雷神笔记本作为市场上备受欢迎的电脑品牌,用户在使用过程…

Adobe-Premiere-CEP 扩展 入门-视频剪辑-去气口插件-Silence Remover

短视频,这两年比较火,不要再问为什么用Premiere,非常难用,为什么不用某影,某些国内软件非常接地气简单,又例如某音资深的视频短编辑就很好用了。。。 Premiere二次开发调试难,不如自己搞个cons…

perl:用 MIDI::Simple 生成midi文件,用 pygame 播放 mid文件

在 csdn.net 下载 strawberry-perl-5.32.1.1-64bit.zip 解压安装在 D:\Strawberry\ 运行 cpan install MIDI::Simple D:\Strawberry\c\bin\gmake.exe test -- OK Running make install for CONKLIN/MIDI-Perl-0.84.tar.gz Installing D:\Strawberry\perl\site\lib\MIDI.pm I…

kubebuilder(6)webhook

operator中的webhook也是很重要的一块功能。也是相对比较独立的模块,所以放在后面讲。 webhook是一个callback,注册到k8s的api-server上。当某个特定的时间发生时,api server就会查询注册的webhook,并根据一些逻辑确认转发消息给…

【ARM Cortex-M3指南】3:Cortex-M3基础

文章目录 三、Cortex-M3基础3.1 寄存器3.1.1 通用目的寄存器 R0~R73.1.2 通用目的寄存器 R8~R123.1.3 栈指针 R133.1.4 链接寄存器 R143.1.5 程序计数器 R15 3.2 特殊寄存器3.2.1 程序状态寄存器3.2.2 PRIMASK、FAULTMASK和BASEPRI寄存器3.2.3 控制寄存器 3.3 操作模式3.4 异常…

使用FPGA实现串-并型乘法器

介绍 其实我们知道,用FPGA实现乘法器并不是一件很简单的事,而且在FPGA中也有乘法器的IP核可以直接调用,我这里完全就是为了熟悉一些FPGA的语法然后写了这样一个电路。 串-并型乘法器模块 从字面上看,串-并乘法器就是其中一个乘数…

Nodejs process.nextTick() 使用详解

还是大剑师兰特:曾是美国某知名大学计算机专业研究生,现为航空航海领域高级前端工程师;CSDN知名博主,GIS领域优质创作者,深耕openlayers、leaflet、mapbox、cesium,canvas,webgl,ech…

OpenCV 为轮廓创建边界框和圆(62)

返回:OpenCV系列文章目录(持续更新中......) 上一篇:OpenCV检测凸包(61) 下一篇 :OpenCV如何为等值线创建边界旋转框和椭圆(62) ​ 目标 在本教程中,您将学习如何: 使用 OpenCV 函数 cv::boundingRect使用 OpenCV 函数 cv::mi…

数据库(MySQL)—— 事务

数据库(MySQL)—— 事务 什么是事务事务操作未控制事务测试异常情况 控制事务一查看/设置事务提交方式:提交事务回滚事务 控制事务二开启事务提交事务回滚事务 并发事务问题脏读(Dirty Read)不可重复读(Non…

数据结构练习题---环形链表详解

链表成环,在力扣中有这样的两道题目 https://leetcode.cn/problems/linked-list-cycle/ https://leetcode.cn/problems/linked-list-cycle-ii/description/ 这道题的经典解法是利用快慢指针,如果链表是一个环形链表,那么快指针(fast)和慢指…

关于MS-DOS时代的回忆

目录 一、MS-DOS是什么? 二、MS-DOS的主要功能有哪些? 三、MS-DOS的怎么运行的? 四、微软开源MS-DOS源代码 五、高手与漂亮女同学 一、MS-DOS是什么? MS-DOS(Microsoft Disk Operating System)是微软公…

工作问题记录React(持续更新中)

一、backdrop-filter:blur(20px); 毛玻璃效果,在安卓机上有兼容问题,添加兼容前缀也无效; 解决方案:让设计师调整渐变,不要使用该属性! 复制代码 background: radial-gradient(33% 33% at 100% 5%, #e9e5e5 0%, rgba…