libcity 笔记:支持的数据集

1 支持的数据集(model)

1.1 traffic_state_pred

HA历史平均值,将历史流量建模为季节性过程,然后使用前几个季节的加权平均值作为预测值。
VAR向量自回归
SVR支持向量回归
ARIMA
AutoEncoder
Seq2Seq采用基于门控循环单元的编码器-解码器框架,进行多步预测
FNN具有两个隐藏层和 L2 正则化的前馈神经网络
RNN

1.1.1 交通流量预测

ACFM

注意力人群流量机

Attentive Crowd Flow Machines, ACM Multimedia 2018
MSTGCN

降级版的ASTGCN,称为多组件时空图卷积网络,去掉了原模型的时空注意力机制

Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting AAAI 2019
ASTGCN
Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting AAAI 2019

基于注意力的时空图卷积网络

ST-ResNet

时空残差网络

Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction AAAI 2017
AGCRN

自适应图卷积循环网络,通过自适应模块增强传统图卷积,并组合成循环神经网络,以捕捉细粒度时空关联。

Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting Neurips 2020
Conv-GCN 

组合图卷积网络(GCN)与三维卷积神经网络(3D CNN)

Multi-graph convolutional network for short-term passenger flow forecasting in urban rail transit. IET Intell. Trans. Syst.14, 10 (2020)
STDN

时空动态网络(STDN)引入流门控机制以学习位置间的动态相似性

Revisiting Spatial-Temporal Similarity: A Deep Learning Framework for Traffic Prediction.  AAAI 2019
STSGCN

时空同步图卷积网络(STSGCN)

Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting. AAAI 2020
ToGCN

拓扑图卷积网络(ToGCN)

Topological Graph Convolutional Network-Based Urban Traffic Flow and Density Prediction. IEEE Trans. Intell. Transp. Syst.(2020)
Multi-STGCnet

含有三个作为时间组件的基于长短期记忆内存(LSTM)的模块和作为空间组件的三个用于提取目标站点空间关联的空间矩阵

Multi-STGCnet:A Graph Convolution Based Spatial-Temporal Framework for Subway PassengerFlow Forecasting IJCNN
ResLSTM

合并残差网络(ResNet),图卷积网络(GCN)和长短期记忆内存(LSTM)

Deep learning architecture for short-term passenger flow forecasting in urban rail transit. IEEE Trans. Intell. Transp. Syst.(2020)
CRANN

可解释的、基于注意力的神经网络

A  Spatio-Temporal  Spot-Forecasting Framework forUrban Traffic Prediction ARXIV 2020
DGCN
Dynamic Graph Convolution Network for Traffic Forecasting Based on Latent Network of Laplace Matrix Estimation. IEEE Trans. Intell. Transp. Syst.(2020)
DSAN

动态切换注意力网络

Preserving Dynamic Attention for Long-Term Spatial-Temporal Prediction kdd 2020
STNN
Spatio-Temporal Neural Networks for Space-Time Series Forecasting and Relations Discovery 2018

1.1.2 交通速度预测

DCRNN 
Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting ICLR 2018
STGCN
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting IJCAI 2018
GWNET
Graph Wave Net for Deep Spatial-Temporal Graph Modeling IJCAI 2019
MTGNN
Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks. KDD 2020
TGCN
T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction. IEEE Trans. Intell. Transp. Syst.21, 9 (2020)
TGCLSTM
Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Frame work for Network-Scale Traffic Learning and Forecasting. IEEE Trans. Intell. Transp.Syst.21, 11 (2020),
ATDM
On the Inclusion of Spatial Information for Spatio-Temporal Neural Networks 2020
GMAN
GMAN:A Graph Multi-Attention Network for Traffic Prediction. AAAI 2020
GTS
 Discrete Graph Structure Learning forForecasting Multiple Time Series  2021
STAGGCN
Spa-tiotemporal Adaptive Gated Graph Convolution Network for Urban Traffic FlowForecasting. CIKM 2020
HGCN

结构化图卷积网络

Hierarchical Graph Convolution Networks for Traffic Forecasting. (2021)
ST-MGAT

时空多头图注意力机制网络,在图上直接建构卷积的同时,考虑邻居节点的特征和边权,生成新的节点表示

ST-MGAT:Spatial-Temporal Multi-Head Graph Attention Networks for Traffic Forecasting. In ICTAI 2020
DKFN

深度卡曼滤波网络

Graph Convolutional Networks with Kalman Filtering for Traffic Prediction SIGSPATIAL 2020
STTN
Spatial-temporal transformer networks for traffic flow forecasting

1.1.3 交通需求量预测

DMVSTNET
Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction AAAI 2018
STG2Seq
STG2Seq: Spatial-Temporal Graph to Sequence Model for Multi-step Passenger Demand Forecasting. IJCAI 2019
CCRNN
Coupled Layer-wise Graph Convolution for Transportation Demand Prediction AAAI 2021

1.1.4 OD预测

GEML
Origin-Destination Matrix Prediction via Graph Convolution: a New Perspective of Passenger Demand Modeling KDD 2019
CSTN
Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction. In IEEE Transactions on Intelligent Transportation Systems. 2019

1.1.5 交通事故预测

GSNet
GSNet: Learning Spatial-Temporal Correlations from Geographical and Semantic Aspects for Traffic Accident Risk Forecasting AAAI 2021

1.2 traj_loc_pred

1.2.1 轨迹下一跳预测

FPMC

经典下一跳预测基线模型

Factorizing personalized Markov chains for next-basket recommendation. In WWW ACM 2010
ST-RNN

聚焦于在RNN隐藏层引入时空转移特性

Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts AAAI 2016
ATST-LSTM

将轨迹点间的时间与距离差引入LSTM,并使用注意力机制

An attention-based spatiotemporal lstm network for next poi recommendation. IEEE Transactions on Services Computing(2019)
SERM

在网络中引入轨迹的语义信息。SERM 模型依赖于 Glove 预训练语料库。

因此在使用该模型前,从Standard Dataset in LibCity - Google 云端硬盘下载了 serm_glove_word_vec.zip 并将其解压至 raw_data 目录下

DeepMove

混合历史和当前的轨迹进行预测,在这方面第一次采用注意力机制

DeepMove: Predicting Human Mobility with Attentional Recurrent Networks. In WWW. ACM 2018
HST-LSTM

将时空转移因子引入LSTM,并采用编码器-解码器架构进行预测

HST-LSTM: A Hierarchical Spatial-Temporal Long-Short Term Memory Network for Location Prediction. In IJCAI 2018
LSTPM

使用两个特别设计的LSTM捕捉用户长短期移动偏好,以联合二者预测下一位置

 Where to Go Next: Modeling Long- and Short-Term User Preferences for Point-of-Interest Recommendation AAAI 2018
GeoSAN
Geography-Aware Sequential Location Recommendation KDD 2020
STAN
STAN: Spatio-Temporal Attention Network for Next Location Recommendation 2021
CARA
 A Contextual Attention Recurrent Architecture for Context-Aware Venue Recommendation. In SIGIR 2018

1.3 ETA

DeepTTE

端到端的深度学习模型,直接预测整条路经所需的旅行时间;提出了地理卷积操作,通过将地理信息整合到传统的卷积中,用来捕捉空间相关性

When Will You Arrive? Estimating Travel Time Based on Deep Neural Networks AAAI 2018

TTPNet

基于张量分解和图接入,可以从历史轨迹有效捕捉旅行速度和路网表征,以及可以更好地预测旅行时间

TTPNet: A Neural Network for Travel Time Prediction Based on Tensor Decomposition and Graph Embedding TKDE 2020

 1.4   map_matching

ST-Matching
Map-Matching for low-sampling-rate GPS trajectories. In: Proc. of the ACM-GIS.  2009
IVMM
An interactive-voting based map matching algorithm. In: Proc. of the MDM. 2010
HMMM
Hidden Markov map matching through noise and sparseness. In: Proc. of the ACM-GIS. 2009

1.5 road_representation

ChebConv

使用基于切比雪夫多项式近似的图卷积模型计算路网表征

Convolutional neural networks on graphs with fast localized spectral filtering NIPS 2016
LINE

适合大规模图结构的图嵌入模型,同时考虑一阶和二阶近似

Line: Large-scale information network embedding WWW 2015
GeomGCN

几何图神经网络

Geom-gcn: Geometric graph convolutional networks 2020
DeepWalk

将随机游走(random walk)和Word2Vec两种算法相结合的图结构数据挖掘算法

Deepwalk: Online learning of social representations KDD 2014
Node2Vec
node2vec: Scalable feature learning for networks KDD 2016
GAT图注意力网络

参考内容:复现模型列表 — Bigscity-LibCity 文档 (bigscity-libcity-docs.readthedocs.io)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/6590.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

kubebuilder(6)webhook

operator中的webhook也是很重要的一块功能。也是相对比较独立的模块,所以放在后面讲。 webhook是一个callback,注册到k8s的api-server上。当某个特定的时间发生时,api server就会查询注册的webhook,并根据一些逻辑确认转发消息给…

【ARM Cortex-M3指南】3:Cortex-M3基础

文章目录 三、Cortex-M3基础3.1 寄存器3.1.1 通用目的寄存器 R0~R73.1.2 通用目的寄存器 R8~R123.1.3 栈指针 R133.1.4 链接寄存器 R143.1.5 程序计数器 R15 3.2 特殊寄存器3.2.1 程序状态寄存器3.2.2 PRIMASK、FAULTMASK和BASEPRI寄存器3.2.3 控制寄存器 3.3 操作模式3.4 异常…

KNN算法详解

KNN分类算法 K最近邻(K-Nearest Neighbors,KNN)算法是一种简单且直观的监督学习算法,用于分类和回归问题。在KNN分类中,通过将新数据点的特征与训练数据中的所有点进行比较,确定其最近邻居,并将…

经典后台管理UI控制台

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>西门星空乐园管理后台</title><script src"../vue_js/vue.js"></script><style>body {margin: 0;padding: 0;width…

MRI学习笔记-spm独立样本t检验

SPM操作&#xff1a; 9-SPM-fmri任务态 二阶分析&#xff1a; 双样本t检验 - 知乎 (zhihu.com) 批处理脚本&#xff1a; clc; clear; nmodel 3; numsub 27; rootdir D:\LLYdata\motor_inhibition_data2\motor_inhibition_fmri;%数据最上层路径 ffxname data_05_1st_leve…

使用FPGA实现串-并型乘法器

介绍 其实我们知道&#xff0c;用FPGA实现乘法器并不是一件很简单的事&#xff0c;而且在FPGA中也有乘法器的IP核可以直接调用&#xff0c;我这里完全就是为了熟悉一些FPGA的语法然后写了这样一个电路。 串-并型乘法器模块 从字面上看&#xff0c;串-并乘法器就是其中一个乘数…

Java面试问题及答案

Java面试问题及答案 以下是几个Java面试中可能会问到的问题及其答案。 1. 解释Java中的多态性是什么&#xff0c;以及它是如何工作的&#xff1f; 问题&#xff1a; 在Java中&#xff0c;多态性是指允许不同类的对象对同一消息做出响应的能力&#xff0c;即同一个接口可以被…

FastApi个人笔记

FastApi笔记 学习FastApi建议直接看官方文档:官方文档 文章目录 FastApi笔记一、环境准备1.1 安装Fast Api 二、第一个Restful API2.1 创建第一个代码框架async作用[(引自CSDN)](https://blog.csdn.net/The_Time_Runner/article/details/105646363): 2.2 运行第一个代码2.3 Swa…

Nodejs process.nextTick() 使用详解

还是大剑师兰特&#xff1a;曾是美国某知名大学计算机专业研究生&#xff0c;现为航空航海领域高级前端工程师&#xff1b;CSDN知名博主&#xff0c;GIS领域优质创作者&#xff0c;深耕openlayers、leaflet、mapbox、cesium&#xff0c;canvas&#xff0c;webgl&#xff0c;ech…

OpenCV 为轮廓创建边界框和圆(62)

返回:OpenCV系列文章目录&#xff08;持续更新中......&#xff09; 上一篇:OpenCV检测凸包(61) 下一篇 :OpenCV如何为等值线创建边界旋转框和椭圆(62) ​ 目标 在本教程中&#xff0c;您将学习如何&#xff1a; 使用 OpenCV 函数 cv::boundingRect使用 OpenCV 函数 cv::mi…

数据库(MySQL)—— 事务

数据库&#xff08;MySQL&#xff09;—— 事务 什么是事务事务操作未控制事务测试异常情况 控制事务一查看/设置事务提交方式&#xff1a;提交事务回滚事务 控制事务二开启事务提交事务回滚事务 并发事务问题脏读&#xff08;Dirty Read&#xff09;不可重复读&#xff08;Non…

python在Django中,模板加载器(Template Loaders)是负责查找和加载模板文件的组件

在Django中&#xff0c;模板加载器&#xff08;Template Loaders&#xff09;是负责查找和加载模板文件的组件。Django默认使用django.template.loaders.filesystem.Loader和django.template.loaders.app_directories.Loader这两个加载器&#xff0c;它们分别用于从文件系统和D…

数据结构练习题---环形链表详解

链表成环&#xff0c;在力扣中有这样的两道题目 https://leetcode.cn/problems/linked-list-cycle/ https://leetcode.cn/problems/linked-list-cycle-ii/description/ 这道题的经典解法是利用快慢指针&#xff0c;如果链表是一个环形链表&#xff0c;那么快指针(fast)和慢指…

关于MS-DOS时代的回忆

目录 一、MS-DOS是什么&#xff1f; 二、MS-DOS的主要功能有哪些&#xff1f; 三、MS-DOS的怎么运行的&#xff1f; 四、微软开源MS-DOS源代码 五、高手与漂亮女同学 一、MS-DOS是什么&#xff1f; MS-DOS&#xff08;Microsoft Disk Operating System&#xff09;是微软公…

最基本的c++代码

#include <iostream> #include <string> using namespace std; void james_kobe(); std::string bas() {string name;cout << "请输入您的目的地" << endl;cin >> name;cin.get(); // 消耗掉输入的换行符return name; }std::string ca…

在Nacos中,如何注册和发现服务实例?

在Nacos中注册与发现服务实例 在微服务架构中&#xff0c;服务注册与发现是一个核心组件&#xff0c;它使得服务提供者能够注册自己的服务信息&#xff0c;服务消费者能够发现并调用所需的服务。Nacos&#xff0c;作为阿里巴巴开源的一个更易于构建云原生应用的动态服务发现、…

【SHADER】Shader实例学习2:Loading Wheel

简介 shader代码来自github上一个项目&#xff0c;compose libraries&#xff0c;但是链接找不到了。。。&#xff0c;代码很简洁&#xff0c;但是里面的技巧适合我这种初学者领会。 Shader代码 const float PI 3.14159265359;// 按角度旋转。&#xff08;安卓的坐标由于从…

工作问题记录React(持续更新中)

一、backdrop-filter:blur(20px); 毛玻璃效果&#xff0c;在安卓机上有兼容问题&#xff0c;添加兼容前缀也无效&#xff1b; 解决方案&#xff1a;让设计师调整渐变&#xff0c;不要使用该属性! 复制代码 background: radial-gradient(33% 33% at 100% 5%, #e9e5e5 0%, rgba…

C++类定义时成员变量初始化

在C11中允许在类定义时对成员变量初始化。 class A { public:A() { }void show(){cout << "m_a " << m_a << endl;cout << "m_b " << m_b << endl;} private:int m_a 10;//类定义时初始化int m_b; //没有初始化…

Microsoft 365 for Mac(Office 365)v16.84正式激活版

office 365 for mac包括Word、Excel、PowerPoint、Outlook、OneNote、OneDrive和Teams的更新。Office提供了跨应用程序的功能&#xff0c;帮助用户在更短的时间内创建令人惊叹的内容&#xff0c;您可以在这里创作、沟通、协作并完成重要工作。 Microsoft 365 for Mac(Office 36…