深入解析希尔排序:原理、实现与优化

目录

一、希尔排序的基本思想

二、希尔排序的时间复杂度

三、优化与改进


希尔排序(Shell Sort)是一种基于插入排序的排序算法,其改进在于通过分组(也叫增量)的方式来减少数据移动的次数,从而提高了排序的效率。希尔排序的基本思想是将待排序的序列根据一定的增量分成若干组,然后分别对每组元素进行插入排序,随着增量逐渐减小,直到增量为1,此时便完成了整个排序过程。

一、希尔排序的基本思想

希尔排序是插入排序的一种改进,它的核心思想是:对于一个较大的增量进行排序时,元素之间的差距较大,能快速将一些元素移动到合适的位置;然后随着增量逐渐减小,直到增量为1,最终完成排序。
具体步骤如下:
(1)选择一个增量序列,通常会选择一个递减的增量,例如[5, 3, 1]。
(2)使用增量分组,将原数组分成若干个子数组,对每个子数组进行插入排序。
(3)减小增量,重新分组,再对每个子数组进行插入排序。
(4)重复这个过程,直到增量为1,此时插入排序能够完成最终的排序。
希尔排序的关键是如何选择合适的增量序列,不同的增量序列会对排序的效率产生较大的影响。

二、希尔排序的时间复杂度

希尔排序的时间复杂度与增量序列的选择有关。最坏情况下,当增量序列选择不当时,希尔排序的时间复杂度为 ( O(n^2) ),但在合适的增量序列下,时间复杂度可以降低至 ( O(n^{3/2}) ) 或更优。
常见的增量序列包括:

(1)原始增量序列:[n/2, n/4, n/8, …, 1]
(2)更优化的增量序列:[1, 4, 13, 40, 121, …]三、Java实现希尔排序
下面通过一个简单的Java代码示例来演示希尔排序的实现过程。

1.基本实现

public class ShellSort {// 希尔排序算法
public static void shellSort(int[] arr) {
int n = arr.length;// 初始增量为数组长度的一半
for (int gap = n / 2; gap > 0; gap /= 2) {
// 对每个增量进行插入排序
for (int i = gap; i < n; i++) {
int temp = arr[i];
int j = i;// 对每个分组进行插入排序
while (j >= gap && arr[j - gap] > temp) {
arr[j] = arr[j - gap];
j -= gap;
}
arr[j] = temp;
}
}
}// 输出数组
public static void printArray(int[] arr) {
for (int i : arr) {
System.out.print(i + " ");
}
System.out.println();
}public static void main(String[] args) {
int[] arr = { 5, 2, 9, 1, 5, 6 };
System.out.println("原数组:");
printArray(arr);// 调用希尔排序
shellSort(arr);System.out.println("排序后数组:");
printArray(arr);
}
}

2.代码解析

(1)增量序列选择:本代码采用的是常见的增量序列,从数组长度的二分之一开始,每次减小一半,直到增量为1。
(2)插入排序:在每次增量时,对相应位置的元素进行插入排序。插入排序的过程和普通的插入排序类似,只是步长变成了增量值。
(3)排序过程:假设原数组长度为n,第一次增量为n/2,分成n/2个子数组,依次对这些子数组进行插入排序;第二次增量为n/4,依此类推,直到增量为1。

3. 运行结果

假设我们输入的原数组是 {5, 2, 9, 1, 5, 6},运行结果如下:
原数组:
5 2 9 1 5 6 
排序后数组:
1 2 5 5 6 9

三、优化与改进

(1)增量序列的选择:希尔排序的性能受增量序列的影响较大。最初的希尔增量序列是将增量不断减小为n/2, n/4, …, 1,但这一序列并不是最优的。后期有许多学者提出了不同的增量序列,如Hibbard序列、Sedgewick序列等,这些序列能显著提高排序效率。
(2)排序的稳定性:希尔排序并不是稳定排序算法,即相等的元素在排序后可能会改变原有的相对顺序。如果需要稳定的排序,通常会选择其他算法如归并排序、插入排序等。

总结
希尔排序作为插入排序的优化版本,通过分组并减少比较和交换的次数,提高了排序的效率。尽管在最坏情况下其时间复杂度仍然较高(( O(n^2) )),但在合适的增量序列下,希尔排序能取得较为优异的性能,尤其在处理大数据量时,比原始的插入排序表现更好。
在实际应用中,希尔排序常用于一些对稳定性要求不高且数据量较大的场景,作为排序算法的一个优化思路,具有一定的应用价值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/65965.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringMVC的消息转换器

SpringMVC的消息转换器(Message Converter)是Spring框架中用于处理HTTP请求和响应体与Java对象之间转换的组件。它们使得开发人员可以轻松地将HTTP请求的数据映射到方法参数,并将返回的对象转换为HTTP响应。 工作原理 当一个HTTP请求到达Spr…

python使用AprilTag 3

python使用AprilTag 3 最近想测试一下AprilTag精度,看看能不能用的上。 1 安装 法1:github源码编译安装(放弃) 一开始找到了AprilTag 3的官方github网址https://github.com/AprilRobotics/apriltag,但是按着操作下…

小程序学习07—— uniapp组件通信props和$emit和插槽语法

目录 一 父组件向子组件传递消息 1.1 props (a)传递静态或动态的 Prop (b)单向数据流 二 子组件通知父组件 2.1 $emit (a)定义自定义事件 (b)绑定自定义事件 三 插槽语法…

C# 设计模式(创建型模式):工厂模式

C# 设计模式(创建型模式):工厂模式 引言 在软件设计中,创建型模式是用来创建对象的设计模式,它们帮助我们将对象的创建过程从业务逻辑中分离出来,减少代码的重复性和耦合度。工厂模式作为创建型设计模式之…

智能水文:ChatGPT等大语言模型如何提升水资源分析和模型优化的效率

大语言模型与水文水资源领域的融合具有多种具体应用,以下是一些主要的应用实例: 1、时间序列水文数据自动化处理及机器学习模型: ●自动分析流量或降雨量的异常值 ●参数估计,例如PIII型曲线的参数 ●自动分析降雨频率及重现期 ●…

Android SPRD 工模测试修改

设备有两颗led灯,工模测试需全亮 vendor/sprd/proprietories-source/factorytest/testitem/led.cpp -13,6 13,10 typedef enum{#define LED_BLUE "/sys/class/leds/blue/brightness"#define LED_RED …

nodeJS下npm和yarn的关系和区别详解

一、命令对应关系 1. 初始化项目 操作npm 命令Yarn 命令初始化项目npm inityarn init跳过提问快速初始化npm init -yyarn init -y 2. 安装依赖 操作npm 命令Yarn 命令安装项目所有依赖npm installyarn install添加依赖npm install <package-name>yarn add <package…

C# 设计模式:装饰器模式与代理模式的区别

C# 设计模式&#xff1a;装饰器模式与代理模式的区别 在软件设计中&#xff0c;装饰器模式&#xff08;Decorator Pattern&#xff09;和代理模式&#xff08;Proxy Pattern&#xff09;都是结构型设计模式&#xff0c;它们的目的都是通过对对象进行包装&#xff0c;来增加或改…

ES中查询中参数的解析

目录 query中参数match参数match_allmatch:匹配指定参数match_phrase query中其他的参数query_stringprefix前缀查询:wildcard通配符查询:range范围查询&#xff1a;fuzzy 查询: 组合查询bool参数mustmust_notshould条件 其他参数 query中参数 词条查询term:它仅匹配在给定字段…

纵览!报表控件 Stimulsoft Reports、Dashboards 和 Forms 2025.1 新版本发布!

Stimulsoft 2025.1 新版发布&#xff0c;旨在增强您创建报告、仪表板和 PDF 表单的体验&#xff01;此最新版本为您带来了许多改进和新功能&#xff0c;使数据处理更加高效和用户友好。亮点包括对 .NET 9 的支持、Microsoft Analysis Services 的新数据适配器、发布向导中适用于…

慧集通iPaaS集成平台低代码训练-实践篇

练习使用帐号信息&#xff1a; 1.致远A8平台&#xff08;请自行准备测试环境&#xff09; 慧集通连接器配置相关信息 访问地址&#xff1a; rest账号&#xff1a;rest rest密码&#xff1a; OA账号&#xff1a; 2.云星空&#xff08;请自行准备测试环境&#xff09; 连接…

Unity Pico 应用失去焦点后,追踪功能被禁用(原生 UI 界面弹出)

在 Unity 中&#xff0c;如果正在使用新的输入系统&#xff0c;任何触发 OnApplicationFocus(false) 的事件都可能会禁用追踪功能。 负责此功能的组件是附加到主摄像机的 "Tracked Pose Driver (Input System)" 组件。由于非输入系统版本不是新输入系统的一部分&…

【运维工具】Ansible一款好用的自动化工具

Ansible一款好用的自动化工具 概述一、基本概念与特点二、核心组件三、主要功能与应用场景四、优缺点 如何使用一、安装Ansible二、配置Ansible三、使用Ansible四、注意事项 Playbook语法详解一、YAML文件的基本结构二、Playbook的主要组成部分三、Playbook示例四、注意事项 概…

使用CSS 和 JavaScript 实现鼠标悬停时图片放大、缩小和抖动

我们可以通过 CSS 和 JavaScript 来实现鼠标悬停时图片放大、缩小和抖动的效果。以下是一个简单的实现方式&#xff1a; 1.HTML 结构 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewp…

面试准备备备备

职业技能 放到简历的黄金位置&#xff08;HR刷选简历的重要参考&#xff09; 基本准则&#xff1a;写在简历上的必须能聊&#xff0c;不然就别写 参考公式&#xff1a;职业技能 必要技术 其他技术 针对性的引导面试官&#xff08;让他问一些你想让他问的&#xff09; 寻找合…

基于微信小程序的面部动作检测系统

引言 本技术文档旨在详细阐述一个基于微信小程序的面部动作检测系统的技术路线、实现方法及关键技术框架。系统的核心功能包括检测用户的左右转头、眨眼和张嘴动作&#xff0c;并根据检测结果逐步引导用户完成任务。为确保系统的安全性和准确性&#xff0c;特别是防止用户通过…

Javascript数据结构——图Graph

当然&#xff0c;让我们深入探讨一下JavaScript中的图数据结构&#xff0c;并列出一些常见的面试题及其代码示例。 图数据结构详解 图&#xff08;Graph&#xff09;是一种非线性的数据结构&#xff0c;由节点&#xff08;也称为顶点&#xff09;和连接这些节点的边组成。节点…

算法-判断一个数是不是3的次幂

给定一个整数&#xff0c;写一个函数来判断它是否是 3 的幂次方。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 整数 n 是 3 的幂次方需满足&#xff1a;存在整数 x 使得 n 3x 示例 1&#xff1a; 输入&#xff1a;n 27 输出&#xff1a;true示…

多光谱图像的处理和分析方法有哪些?

一、预处理方法 1、辐射校正&#xff1a; 目的&#xff1a;消除或减少传感器本身、大气条件以及太阳光照等因素对多光谱图像辐射亮度值的影响&#xff0c;使得图像的辐射值能够真实反映地物的反射或发射特性。 方法&#xff1a;包括传感器校正和大气校正。传感器校正主要是根…

艾体宝方案丨全面提升API安全:AccuKnox 接口漏洞预防与修复

一、API 安全&#xff1a;现代企业的必修课 在现代技术生态中&#xff0c;应用程序编程接口&#xff08;API&#xff09;扮演着不可或缺的角色。从数据共享到跨平台集成&#xff0c;API 成为连接企业系统与外部服务的桥梁。然而&#xff0c;伴随云计算的普及与微服务架构的流行…