空天地遥感数据识别与计算--数据分析如何助力农林牧渔、城市发展、地质灾害监测等行业革新

 在科技飞速发展的时代,遥感数据的精准分析已经成为推动各行业智能决策的关键工具。从无人机监测农田到卫星数据支持气候研究,空天地遥感数据正以前所未有的方式为科研和商业带来深刻变革。然而,对于许多专业人士而言,如何高效地处理、分析和应用遥感数据仍是一个充满挑战的课题。本次内容,致力于为您搭建一条从入门到精通的学习之路,通过领先的AI技术与实战案例帮助您掌握遥感数据处理的核心技能。

通过系统化的模块设计和丰富的实战案例,深入理解和掌握遥感数据的处理与计算

通过15个经过精心设计的真实案例,深度参与地质监测、城市规划、农业分析、生态评估等不同场景下的遥感应用实践。层层递进、结构严谨,帮助您系统性掌握从数据预处理、图像增强、特征提取到机器学习建模的每一个关键环节。

目标:

从基础到高阶的系统化路径:循序渐进,从遥感数据基础知识到复杂的实战案例,适合无基础到中高级用户,帮助您打下扎实的技术基础。

●15个行业领先的实战案例:涵盖农林牧渔、城市发展、地质灾害监测等关键应用领域,让您亲身体验数据分析如何助力行业革新。

●先进技术整合的全流程实践:通过Python和OpenCV的结合,打造从数据采集、处理到模型构建的完整流程,赋予您独立完成遥感分析项目的能力。

●抛弃电脑上全部传统软件:结合ChatGPT智能支持,只用Python和OpenCV实现遥感的全部功能,让您轻松突破技术瓶颈,实现快速上手与高效学习。

●多源数据综合分析:涵盖卫星、无人机和地面各个平台、涵盖多光谱、高光谱、激光多源数据;涵盖线性算法、机器学习、人工智能等层次算法。

第一部分:未来已来——工具与开发环境搭建

1.1 机器学习基础
(1)监督学习

(2)非监督学习

(3)深度学习

1.2 GPT安装与用法

(1)ChatGPT 简介

(2)ChatGPT 使用方法

1.3 Python安装与用法

(1)Python简介

(2)Python的特点

(3)Python的应用场景

(4)安装 Python

(5)Jupyter Notebook

(6)Anaconda

(7)创建第一个程序

第二部分:千里眼——遥感数据应用全流程

2.1 遥感数据获取

(1)遥感定义与原理

(2)常见遥感数据源

(3)遥感数据获取方法

2.2 遥感数据处理

(1)图像去噪

(2)几何校正

(3)大气校正

2.3 遥感数据计算

(1)波段选择

(2)波段计算

2.4 案例实战:计算家乡的土壤成分含量

(1)计算过程

(2)程序实现

(3)计算结果

(4)结果制图

第三部分:地面数据——图像分类

3.1 数据增广

(1)什么是数据增广

(2)数据增广的代码实现

3.2 地面化验数据综合处理

(1)地面数据的作用

(2)地面数据采样方案设计和化验方法

(3)数据读取与初步检查

(4)数据清洗与处理

(5)数据的可视化与分布分析

3.3 程序实现

(1)描述性统计分析

(2)数据分布

(3)相关性分析

(4)数据正态性检验

(5)元素之间的线性回归分析

(6)箱线图和异常值分析

(7)两元素的T检验

3.4 案例实战:自动对农作物进行分类

(1)导入必要的库并准备数据

(2)特征提取(图像降维)

(3)标签编码

(4)训练支持向量机模型

(5)对测试集图片进行分类预测

(6)评估模型性能

(7)使用网格搜索优化SVM参数

(8)使用网格搜索优化SVM参数

(9)使用PCA进行降维

第四部分:无人机数据——目标检测

4.1 制作标签数据

(1)标签数据的重要性

(2)制作和标注机器学习的标签数据

(3)常见的标注格式

(4)LabelImg

(5)标注

(6)标注VOC格式

(7)标注YOLO格式

(9)标注并导出为COCO格式

4.2 无人机多光谱数据综合处理

(1)无人机机载飞行作业

(2)地面同步数据特点

(3)无人机数据处理

4.3 程序实现

(1)数据准备与预处理

(2)环境配置

(3)算法流程

(4)实现基于边缘和轮廓的检测

(5)解释代码

(6)检查结果

4.4 案例实战:自动检测森林火灾范围

(1)林火

(2)环境设置与依赖安装

(3)加载森林图像和对应的标注文件

(4)实现火点检测算法

(5)批量处理森林图像并标记火灾点

第五部分:卫星数据——变化检测

5.1 遥感指数模型

(1)算法与模型库

(2)计算叶绿素含量

5.2 卫星数据综合处理

(1)计算二价铁含量

(2)计算全球环境监测指数

5.3 程序实现

(1)导入必要的库

(2)设置数据路径

(3)加载遥感图像

(4)水体识别算法

(5)变化检测算法

(6)保存变化结果

(7)导出变化统计表

(8)结果展示

5.4 案例实战:自动实现水体动态监测

(1)导入必要的库

(2)加载遥感图像并裁剪到一致大小

(3)计算水体指数 (NDWI)

(4)变化检测

(5)保存变化检测结果

(6)导出变化统计表

第六部分:多源数据——联合分析

6.1 图像自动配准

(1)图像配准

(2)自动配准的步骤

6.2 空天地数据综合处理

(1)图像配准

(2)导入必要的库

(3)读取无人机和卫星图像

(4)生成地理控制点 (GCP)

(5)应用配准算法

(6)保存配准后的无人机图像

(7)保存配准的坐标对应数据

6.3 程序实现

(1)导入必要的库

(2)预处理

(3)特征检测和匹配

(4)图像配准

(5)保存

6.4 案例实战:城市建筑物检测与变化监测

(1)城市建筑物检测与变化监测的原理

(2)图像预处理

(3)建筑物检测

(4)变化检测

(5)输出与可视化

(6)实战

第七部分:研究热点攻关

7.1 案例实战:农田作物分类与产量估算

7.2 案例实战:土地利用与土地覆盖分类

7.3 案例实战:植被健康监测与病害检测

7.4 案例实战:海岸侵蚀监测变化分析

7.5 案例实战:空气污染物浓度遥感监测

7.6 案例实战:沙漠化监测与土地退化分析

7.7 案例实战:城市违章建筑监控

7.8 案例实战:碳汇估算与生态服务分析

7.9 案例实战:地表温度与热岛效应分析

7.10案例实战:地质灾害预测与监测

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/64587.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

多智能体/多机器人网络中的图论法

一、引言 1、网络科学至今受到广泛关注的原因: (1)大量的学科(尤其生物及材料科学)需要对元素间相互作用在多层级系统中所扮演的角色有更深层次的理解; (2)科技的发展促进了综合网…

python数据分析:介绍pandas库的数据类型Series和DataFrame

安装pandas pip install pandas -i https://mirrors.aliyun.com/pypi/simple/ 使用pandas 直接导入即可 import pandas as pd pandas的数据结构 pandas提供了两种主要的数据结构:Series 和 DataFrame,类似于python提供list列表,dict字典,…

GMSSL的不同python版本

链接1(推荐) 这个使用的库,是gm ssl 3.1.1。为什么推荐?因为这个有C源码。 GitHub - GmSSL/GmSSL-Python: Python binding to the GmSSL library 链接2 这个使用的库,是gmssl 3.2.2。搜索3.2.2,找不到相…

Python:枚举(包含例题字符计数,反倍数,洁净数,扫雷)

一.枚举是什么 枚举:通过逐个尝试所有可能的值或组合来解决问题的方法。 将问题空间划分为一系列离散的状态,并通过遍历这些状态来寻找解决方案。 二.枚举流程 1.确定解空间(一维,二维等) 2.确定空间边界&#xff…

计算机网络 八股青春版

什么是HTTP?HTTP和HTTPS的区别 HTTP HTTP是超文本运输协议,是一种无状态(每次请求都是独立的)的应用层协议。用于在客户端和服务器之间传输超文本数据(如HTML文件)。默认端口是80数据以明文形式传输&#…

域名和服务器是什么?域名和服务器是什么关系?

在互联网的生态系统中,域名和服务器是两个至关重要的组成部分。它们共同构成了我们访问网站和使用在线服务的基础。那么域名和服务器是什么?域名和服务器是什么关系? 1、域名的概念 域名是互联网中用于标识特定地址的一种文字形式。它是用户访问网站时输入的易记…

设计模式之 abstract factory

适用场景 一个系统要独立于它的产品的创建、组合和表示时。一个系统要由多个产品系列中的一个来配置时。当你要强调一系列相关的产品对象的设计以便进行联合使用时。当你提供一个产品类库,而只想显示它们的接口而不是实现时 架构演示 首先client这个东西可以接触到…

linux-----数据库

Linux下数据库概述 数据库类型: 关系型数据库(RDBMS):如MySQL、PostgreSQL、Oracle等。这些数据库以表格的形式存储数据,表格之间通过关系(如主键 - 外键关系)相互关联。关系型数据库支持复杂的…

鸿蒙学习笔记:用户登录界面

文章目录 1. 提出任务2. 完成任务2.1 创建鸿蒙项目2.2 准备图片资源2.3 编写首页代码2.4 启动应用 3. 实战小结 1. 提出任务 本次任务聚焦于运用 ArkUI 打造用户登录界面。需呈现特定元素:一张图片增添视觉感,两个分别用于账号与密码的文本输入框&#…

[python SQLAlchemy数据库操作入门]-02.交易数据实体类建立

哈喽,大家好,我是木头左! 为了顺利地使用SQLAlchemy进行股票交易数据的处理,首先需要搭建一个合适的开发环境。这包括安装必要的软件包以及配置相关的依赖项。 安装Python及虚拟环境 下载并安装Python(推荐使用最新版)。创建一个新的虚拟环境以避免依赖冲突。python -m …

RunCam WiFiLink连接手机图传测试

RunCam WiFiLink中文手册从这里下载 一、摄像头端 1.连接天线(易忘) 2.打开摄像头前面的盖子(易忘) 3.接上直流电源,红线为正,黑线为负 4.直流电源设置电压为14v,电流为3.15A, 通…

通过阿里云 Milvus 和 LangChain 快速构建 LLM 问答系统

背景介绍 阿里云向量检索 Milvus 版是一款云上全托管服务,确保了与开源Milvus的100%兼容性,并支持无缝迁移。在开源版本的基础上增强了可扩展性,能提供大规模 AI 向量数据的相似性检索服务。相比于自建,目前阿里云Milvus具备易用…

云原生是什么

云原生是一种构建和运行应用程序的方法,它充分利用了云计算的优势。它不仅仅是指在云上运行应用程序,更重要的是指应用程序的设计、开发、部署和运维方式都充分考虑了云环境的特性,从而能够更好地利用云的弹性、可扩展性和灵活性。 更详细地…

LeetCode刷题day29——动态规划(完全背包)

LeetCode刷题day29——动态规划(完全背包) 377. 组合总和 Ⅳ分析: 57. 爬楼梯(第八期模拟笔试)题目描述输入描述输出描述输入示例输出示例提示信息 分析: 322. 零钱兑换分析: 279. 完全平方数分…

多个Echart遍历生成 / 词图云

echart官网 安装 如果版本报错推荐安装以下版本 npm install echarts4.8.0 --savenpm uninstall echarts//这个是卸载命令以下安装成功后是局部引入:多个Echart遍历生成 vue3echart单个页面多个图表循环渲染展示:<template><div class"main"><div …

LabVIEW伸缩臂参数监控系统

LabVIEW开发伸缩臂越野叉车参数监控系统主要应用于工程机械中的越野叉车&#xff0c;以提高车辆的作业效率和故障诊断能力。系统通过PEAK CAN硬件接口和LabVIEW软件平台实现对叉车作业参数的实时监控和故障分析&#xff0c;具有良好的实用性和推广价值。 系统组成 系统主要由P…

【FFmpeg】解封装 ① ( 封装与解封装流程 | 解封装函数简介 | 查找码流标号和码流参数信息 | 使用 MediaInfo 分析视频文件 )

文章目录 一、解封装1、封装与解封装流程2、解封装 常用函数 二、解封装函数简介1、avformat_alloc_context 函数2、avformat_free_context 函数3、avformat_open_input 函数4、avformat_close_input 函数5、avformat_find_stream_info 函数6、av_read_frame 函数7、avformat_s…

windows 自旋锁的实现

VOID KxAcquireSpinLock ( __inout PKSPIN_LOCK SpinLock) {//设置SpinLock指定位,并返回原值//如果原值为0,表示没有上锁,直接返回//如果原值为1,表示已经上锁,进入函数if (InterlockedBitTestAndSet64((LONG64 *)SpinLock, 0)){KxWaitForSpinLockAndAcquire(SpinLock);}retur…

YOLOv8目标检测——详细记录使用ONNX Runtime进行推理部署C++/Python实现

概述 在之前博客中有介绍YOLOv8从环境安装到训练的完整过程&#xff0c;本节主要介绍ONNX Runtime的原理以及使用其进行推理加速&#xff0c;使用Python、C两种编程语言来实现。 https://blog.csdn.net/MariLN/article/details/143924548?spm1001.2014.3001.5501 1. ONNX Ru…

python学opencv|读取图像(十六)修改HSV图像HSV值

【1】引言 前序学习进程中&#xff0c;我们已经掌握了对HSV通道和BGR通道的拆分和合并&#xff0c;并通过自由组合的形式&#xff0c;获得了和初始图像完全不一样的新图像&#xff0c;相关文章可以参考下述链接&#xff1a; python学opencv|读取图像&#xff08;十四&#xf…