二、使用langchain搭建RAG:金融问答机器人--数据清洗和切片

选择金融领域的专业文档作为源文件

这里选择 《博金大模型挑战赛-金融千问14b数据集》,这个数据集包含若干公司的年报,我们将利用这个年报搭建金融问答机器人。
具体下载地址 这里

在这里插入图片描述

git clone https://www.modelscope.cn/datasets/BJQW14B/bs_challenge_financial_14b_dataset.git

具体目录如下:
在这里插入图片描述
这里直接使用已经识别的纯文本数据,即pdf_txt_file目录下的文件。

选择词向量模型

这里选用m3e-base。M3E是专注于中文文本处理,具有强大的文本处理能力和灵活的部署选项,适合资源受限或需要私有化的应用场景

这里

在这里插入图片描述

git clone https://www.modelscope.cn/Jerry0/m3e-base.git

读取与清洗数据

1, 读取文件列表

import osdir_path = "bs_challenge_financial_14b_dataset/pdf_txt_file"
all_files = os.listdir(dir_path)
print(all_files)

在这里插入图片描述
2,清洗数据
从结果我们可以观察到文件名都是乱码,我们需要把文件名改成公司名,可以一看就看出是哪个公司的年报,并且在后续处理的时候把公司名加入到每个chuck中,在后续检索的时候对应指定公司的query就能匹配这个公司相关的一系列信息。
(1),读取数据

import re
for file in all_files:with open(os.path.join(dir_path, file), "r",encoding = "utf-8") as f:lst = f.readlines()pattern = ".*发行人.*股份有限公司\n"name = ""         for line in lst[-20:]:            if re.match(pattern, line): name = linename = name.split(":")[-1]                breakif name == "" :pattern = ".*股份有限公司\n"for line in lst:            if re.match(pattern, line): name = lineif ":" in name:name = name.split(":")[-1]                break        name = name.strip() #找到公司名后:创建一个新文件夹存放if name != "" :           print(file,name)try:with open("financial_dataset/{}.txt".format(name), "w",encoding = "utf-8") as f:for line in lst:f.write(line)except Exception as e:print(e)continue

(2)经过研究,文本里会含有多个股份有限公司,所以想过滤一次“.*发行人.*股份有限公司”,再过滤“.*股份有限公司” 。然后把新文件放到独立的目录下

import osdir_path = "financial_dataset"
files = os.listdir(dir_path)
files

在这里插入图片描述
(3)然后对文件名做最后的筛选,公司名称一般不超过20个字符。

new_files = []
for item_file in files:if len(item_file) > 20:continueelse:if " " in item_file:continueif "、" in item_file:continuenew_files.append(item_file)
new_files

在这里插入图片描述
至此数据清洗完毕。如果还有其他需求可以自行再根据规则清洗。

读取无结构文本内并切片

1,使用UnstructuredFileLoader加载文件

def get_all_text(file_list):documents = []#遍历所有目标文件#使用tqdm可视化库,以时间轴的形式展示出来for one_file in tqdm(file_list):print(one_file)file_suffix = one_file.split(".")[-1]if file_suffix == "txt":loader = TextLoader(one_file,encoding = "utf-8")else:continuedocuments.extend(loader.load())return documentsfile_list = [os.path.join(dir_path, item) for item in new_files]
docs = get_all_text(file_list)

在这里插入图片描述
2,数据切片
由于1个文档的内容比较多,超过大模型的上下文窗口限制,所以需要把数据切片。
调用langchain里的text_splitter分割为chunk,每个chunk设置为350个大小,同时overlap为150,也就是前一个chunk的后150个字符跟后一个chunk的前150个字符是一样的。通过这样的方式避免在分chunk的时候遗漏相关信息

from langchain.text_splitter import RecursiveCharacterTextSplittertext_splitter = RecursiveCharacterTextSplitter(chunk_size=350, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)
print(split_docs[0])

在这里插入图片描述
可以看page_content里没公司名称,但我们在query的时候希望与公司相关,所有把公司名也放到page_content里

for one_chunk in split_docs:one_chunk.page_content = one_chunk.metadata["source"].split("/")[-1] +  one_chunk.page_content + one_chunk.metadata["source"].split("/")[-1]
print(split_docs[0])

在这里插入图片描述

数据向量化并保存到向量数据库中

使用词向量模型把前面切分的chunk转化成词向量,保存到向量数据库中。

from langchain_huggingface import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(model_name="m3e-base") from langchain.vectorstores import Chroma
# 定义持久化路径
persist_directory = 'data_base/chroma'
# 加载数据库
vectordb = Chroma.from_documents(documents=split_docs[:20000],#由于自己电脑性能有限,如果很久没完成的时候,可以重新启动执行,改成取1000或者500。记得删除已经生成的向量数据库文件。embedding=embeddings,persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)

会自动保存到磁盘上:
在这里插入图片描述

数据清洗和切片已完毕。

项目源代码:https://gitee.com/ailianshuo/finance-bot

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/64463.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

maven使用Dependency-Check来扫描安全漏洞

在现代软件开发中,使用开源库和第三方依赖项已成为常态。然而,这些依赖项可能包含已知的安全漏洞,给应用程序带来潜在的风险。为了解决这个问题,OWASP Dependency-Check 应运而生。本文将介绍 OWASP Dependency-Check 的功能、安装…

meta-llama/Llama-3.2-1B 微调记录

踩坑: 1.刚开始部署在自己的windows电脑上,semgrep不支持windows ,然后就换了linux服务器 2.服务器没有梯子,huggingface无法访问,模型数据集无法下载 解决方法: 使用huggingface镜像网站下载模型&#xf…

双指针---有效三角形的个数

这里写自定义目录标题 题目链接 [有效三角形的个数](https://leetcode.cn/problems/valid-triangle-number/description/)问题分析代码解决执行用时 题目链接 有效三角形的个数 给定一个包含非负整数的数组 nums ,返回其中可以组成三角形三条边的三元组个数。 示例…

《通信电子电路》入门手册

因为大学这门课好多同学理解不了这门课 于是考完试后花了两天时间整理了这份笔记,在这分享给完全没有学懂这门课的同学,也帮助“理解概念才能学得进去”的同学入门 笔记:通信电子电路 入门手册 —— flowus笔记 对应:《通信电子…

基于单片机的智能水表的设计

1总体设计 本次设计智能IC卡水表,在系统架构上设计如图2.1所示,由STM32F103单片机,YF-S401霍尔型传感器,RFID模块,OLED12864液晶,按键,继电器等构成,在功能上可以实现水流量的检测,…

LA2016逻辑分析仪使用笔记1:测量引脚、解析串口数据

今日尝试学习使用LA2016逻辑分析仪:测量引脚 解析串口数据: 目录 逻辑分析仪: 实验接线: 基础操作: 选择使用到的通道: 设置采样时间、采样频率: 设置电平标准: 解析串口数据、测量串…

[论文阅读]Universal and transferable adversarial attacks on aligned language models

Universal and transferable adversarial attacks on aligned language models http://arxiv.org/abs/2307.15043 图 1:Aligned LLMs 不是对抗性 Aligned。我们的攻击构建了一个单一的对抗性提示,该提示始终绕过最先进的商业模式(包括 ChatG…

【C++】小乐乐求和题目分析n变量类型讨论

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 💯前言💯题目描述💯解题分析💯为什么 n 需要是 long long问题重点:中间计算水平上的数据类型不足的例子:正确解决:将 n 设…

计算机基础知识——数据结构与算法(一)(山东省大数据职称考试)

大数据分析应用-初级 第一部分 基础知识 一、大数据法律法规、政策文件、相关标准 二、计算机基础知识 三、信息化基础知识 四、密码学 五、大数据安全 六、数据库系统 七、数据仓库. 第二部分 专业知识 一、大数据技术与应用 二、大数据分析模型 三、数据科学 数据结构与算法…

WebView通过@JavascriptInterface 调用原生方法

1. 创建 WebView 和设置 WebView 设置 在 XML 布局中添加 WebView 在activity_main.xml里创建一个WebView控件 <?xml version"1.0" encoding"utf-8"?> <androidx.constraintlayout.widget.ConstraintLayout xmlns:android"http://schem…

基于AI对话生成剧情AVG游戏

游戏开发这个领域&#xff0c;一直有较高的学习门槛。作为一个非专业的游戏爱好者&#xff0c;如果想要开发游戏&#xff0c;往往受制于游戏引擎的专业程度&#xff0c;难以完成复杂的游戏项目。 AI IDE的诞生&#xff0c;提供了另外的一种思路&#xff0c;即通过AI 生成项目及…

ElasticSearch 数据聚合与运算

1、数据聚合 聚合&#xff08;aggregations&#xff09;可以让我们极其方便的实现数据的统计、分析和运算。实现这些统计功能的比数据库的 SQL 要方便的多&#xff0c;而且查询速度非常快&#xff0c;可以实现近实时搜索效果。 注意&#xff1a; 参加聚合的字段必须是 keywor…

F5中获取客户端ip地址(client ip)

当F5设备对其原始设置上的所有IP地址使用NAT时&#xff0c;连接到poo成员&#xff08;nodes、backend servers&#xff09;的出站连接将是NAT IP地址。 pool 成员&#xff08;nodes、backend servers&#xff09;将无法看到真实的客户端 ip地址&#xff0c;因为看到的是F5上的…

MATLAB引用矩阵元素的几种方法

引用矩阵元素可以通过索引&#xff0c;也可以通过逻辑值 索引 通过引用元素在矩阵中的位置来提取元素&#xff0c;例如&#xff1a; - 逻辑值 通过某种逻辑运算来使得要提取的值变为逻辑 1 1 1&#xff0c;用 A ( ) A() A()提取即可&#xff0c; A A A为原矩阵的名称。 例如&…

机器学习预处理-表格数据的空值处理

机器学习预处理-表格数据的空值处理 机器学习预处理-表格数据的分析与可视化中详细介绍了表格数据的python可视化&#xff0c;可视化能够帮助我们了解数据的构成和分布&#xff0c;是我们进行机器学习的必备步骤。上文中也提及&#xff0c;原始的数据存在部分的缺失&#xff0…

了解 SpringMVC 请求流程

文章目录 1. Spring 基础 - SpringMVC 请求流程1.1 引入1.2 什么是 MVC1.3 什么是 Spring MVC1.4 请求流程核心架构的具体流程步骤补充 1.5 案例**Maven 包引入****业务代码的编写**DaoServiceControllerwebapp 下的 web.xmlspringmvc.xmlJSP 视图 2. Spring 进阶 - Dispatcher…

Springboot3.x配置类(Configuration)和单元测试

配置类在Spring Boot框架中扮演着关键角色&#xff0c;它使开发者能够利用Java代码定义Bean、设定属性及调整其他Spring相关设置&#xff0c;取代了早期版本中依赖的XML配置文件。 集中化管理&#xff1a;借助Configuration注解&#xff0c;Spring Boot让用户能在一个或几个配…

鸿道Intewell-C纯实时构型,适合有功能安全认证需求的工业操作系统

鸿道Intewell-C纯实时构型&#xff0c;适合有功能安全认证需求的工业操作系统 鸿道Intewell-C是一款工业实时微内核操作系统&#xff0c;由科东软件自主研发&#xff0c;具有超低延迟和最小抖动&#xff0c;保障工业设备可以高效处理时间敏感的现场业务&#xff0c;支持多种工…

Stream– ESP8266物联网应用,(客户端向服务器发送数据信息 客户端向服务器请求数据信息)

Stream– ESP8266物联网应用 Stream对于ESP8266-Arduino语言来说指的是数据序列。请留意&#xff1a;在C编程中Stream常被翻译作“流”。我们认为将Stream称为数据序列更加直观。因为数据序列这一概念有两个很关键特点。 第一个特点是“序”&#xff0c;即数据序列不能是杂乱…

芯品荟|SWM221系列芯片之TFTLCD彩屏显示及控制

“革新未来&#xff0c;智驭控制新纪元”&#xff0c;由广东华芯微特集成电路有限公司市场总监张琢&#xff0c;对SWM221系列的强大功能表现进行了整体介绍。 确实&#xff0c;华芯微特在TFTLCD显示及控制有十多年应用基础和积累的团队&#xff0c;仍勇于挑战&#xff0c;自我…