【大模型】从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!

《从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!》


正文:

在自然语言处理(NLP)领域,Zero-shot、One-shot 和 Few-shot 学习已经成为衡量大语言模型泛化能力的重要指标。尤其是在大规模预训练模型(如 GPT 系列)的推动下,这些技术得到了广泛应用和关注。本篇文章将带你全面了解这三种学习方法的核心概念、原理和实际应用场景。


1. 什么是 Zero-shot 学习?

定义

  • Zero-shot 学习指模型仅通过任务描述(Task Description)理解任务,并在没有任何示例的情况下预测输出结果。它完全依赖于预训练阶段中学习到的通用知识,不需要针对具体任务的额外数据。

特点

  • 无示例:模型仅通过任务描述执行推理。

  • 广泛适用:适合没有标注数据的新任务。

  • 性能受限:对复杂任务的预测准确率较低。

示例: 任务:将英语翻译成法语。

Task Description: Translate English to French:  
Prompt: cheese => ?

输出:模型根据上下文知识输出 “fromage”。

优点

  • 不需要额外训练数据。

  • 能快速验证模型在新任务上的能力。

缺点

  • 对任务复杂度较高的问题效果有限。

  • 缺乏示例指导,易受语言模态间知识缺失的影响。


2. 什么是 One-shot 学习?

定义

  • One-shot 学习是在任务描述的基础上,提供一个输入输出示例,模型通过示例掌握任务模式,但不对模型权重进行更新。

特点

  • 任务描述 + 单示例:增加了对任务的初步指导。

  • 无梯度更新:仅依赖示例推理,无需训练。

示例: 任务:将英语翻译成法语。

Task Description: Translate English to French:  
Example: sea otter => loutre de mer  
Prompt: cheese => ?

输出:模型根据单个示例输出 “fromage”。

优点

  • 单个示例可以显著提升简单任务的准确性。

  • 高效、便捷,适合资源有限的任务。

缺点

  • 对于复杂任务,单个示例可能不足以揭示模式。

  • 示例质量对预测结果影响较大。


3. 什么是 Few-shot 学习?

定义

  • Few-shot 学习是在任务描述的基础上,提供多个输入输出示例,通过示例展示任务的模式和多样性,模型依此进行推理。

特点

  • 任务描述 + 多示例:示例越多,模型对任务的理解越全面。

  • 无梯度更新:无需权重调整,直接推理。

示例: 任务:将英语翻译成法语。

Task Description: Translate English to French:  
Examples:
- sea otter => loutre de mer  
- peppermint => menthe poivrée  
- plush giraffe => girafe peluche  
Prompt: cheese => ?

输出:模型根据多个示例输出 “fromage”。

优点

  • 更高的准确性,适合任务模式较复杂的场景。

  • 提供示例覆盖任务模式后,泛化能力较强。

缺点

  • 对示例的数量和质量要求较高。

  • 示例不足或模式不清晰时效果会受限。


4. 总结对比:Zero-shot、One-shot、Few-shot

方法特点优点缺点
Zero-shot无示例,仅任务描述预测不需额外训练数据,适合新任务对复杂任务准确率低
One-shot单个示例辅助预测少量示例即可提升效果对示例依赖较高
Few-shot多个示例辅助预测泛化能力强,对多样任务模式适用对示例数量和质量要求较高

5. 应用场景

Zero-shot 应用
  • 机器翻译:适用于低资源语言对的翻译任务。

  • 情感分析:快速判断新领域文本的情感倾向。

  • 知识问答:无标注数据的问答场景。

One-shot 应用
  • 命名实体识别(NER):给定一个示例帮助模型识别特定领域的实体。

  • 意图分类:用一个示例指导模型理解新的意图类型。

Few-shot 应用
  • 生成任务:如多语言文本摘要,提供多示例提升模型质量。

  • 多分类任务:在领域特定数据不足时,用少量标注数据训练和测试。


6. 未来方向

随着大语言模型(如 GPT-4、PaLM)的发展,Zero-shot、One-shot 和 Few-shot 学习已经成为衡量模型泛化能力的重要标准。未来研究的可能方向包括:

  1. 增强 Few-shot 效果:通过更智能的示例选择提升模型性能。

  2. 提升 Zero-shot 能力:更好地利用模型预训练知识库。

  3. 跨模态扩展:探索图像、音频与文本任务的 Few-shot 应用。


总结: 从 Zero-shot 到 Few-shot,语言模型的泛化能力不断增强,极大地降低了任务开发的门槛。希望本篇文章能够帮助你全面了解这些核心学习方法,为你的 NLP 项目提供新的思路。

欢迎评论区分享你的应用场景与问题!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/62202.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker 安装mysql8.4.0

1、拉取mysql8.4.0镜像 docker pullmysql:8.4.0-oraclelinux8查看镜像 docker images2、新建宿主机本地目录:用来挂载MySQL容器所产生的数据的目录 mkdir -p /home/admin/data/mysql /home/admin/logs/mysql /home/admin/conf/mysql3、在/home/admin/conf/mysql目…

ABAP OOALV模板

自用模板,可能存在问题 一、主程序 *&---------------------------------------------------------------------* *& Report ZVIA_OO_ALV *&---------------------------------------------------------------------* REPORT ZVIA_OO_ALV.INCLUDE ZVI…

DeepSpeed-chat RLHF实战

轩辕-6bRLHF落地实战 模型介绍:轩辕-6B 模型库 (modelscope.cn) 1.1偏好数据集构建 ​ 1.1.1Prompt构建 1.1.2 Response生成 保证RM训练数据和测试数据分布一致 使用模型来生成response,为了评价response的质量,可以提高采样参数中的…

通过抓包,使用frida定位加密位置

首先我们抓取一下我们要测试的app的某一个目标api,通过抓api的包,得到关键字。 例如:关键字:x-sap-ri 我们得到想要的关键字后,通过拦截 类,寻找我们的关键字,及找到发包收包的位置&#xff0c…

无线WiFi网络版毫米波雷达人体传感器,智能家居节能减排照明有人无人识别

在这个科技日新月异的时代,智能家居已经不再是遥不可及的未来概念,而是悄然融入了我们的日常生活,为我们的生活带来了未有的便捷与舒适。今天,让我们一起探索一项创新性的智能家居技术——飞睿智能无线WiFi网络版毫米波雷达人体传…

Linux介绍与安装指南:从入门到精通

1. Linux简介 1.1 什么是Linux? Linux是一种基于Unix的操作系统,由Linus Torvalds于1991年首次发布。Linux的核心(Kernel)是开源的,允许任何人自由使用、修改和分发。Linux操作系统通常包括Linux内核、GNU工具集、图…

26.100ASK_T113-PRO 测试摄像头 输出信息

1.测试代码 读到摄象头参数 输出 video_test.c #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <sys/ioctl.h> #include <unistd.h> #include <stdio.h> #include <string.h> #include <linux/type…

Qt读写Usb设备的数据

Qt读写Usb设备的数据 问题:要读取usb设备进行通讯&#xff0c;qt好像没有对应的库支持。解决&#xff1a;libusbwindow下载 :Linux下载: QtUsb 开源的第三方库库里面的函数说明&#xff1a;window版本&#xff1a;Linux中也提供的直接下载测试代码&#xff1a;库下载&#xff1…

2024最新python使用yt-dlp

2024最新python使用yt-dlp下载YT视频 1.获取yt的cookie1&#xff09;google浏览器下载Get cookies.txt LOCALLY插件2&#xff09;导出cookie 2.yt-dlp下载[yt-dlp的GitHub地址](https://github.com/yt-dlp/yt-dlp?tabreadme-ov-file)1&#xff09;使用Pycharm(2024.3)进行代码…

python学opencv|读取图像

【1】引言 前序学习了使用matplotlib模块进行画图&#xff0c;今天开始我们逐步尝试探索使用opencv来处理图片。 【2】学习资源 官网的学习链接如下&#xff1a; OpenCV: Getting Started with Images 不过读起来是英文版&#xff0c;可能略有难度&#xff0c;所以另推荐一…

27加餐篇:gRPC框架的优势与不足之处

gRPC作为一个现代的、开源的远程过程调用(RPC)框架,在多个方面都展现了其优雅之处,同时也存在一些不足之处。这篇文章我们就相对全面的分析一下gRPC框架那些优雅的地方和不足的地方。 优雅的地方 gRPC作为一个RPC框架,在编码、传输协议已经支持多语言方面都比较高效,下…

linux模拟HID USB设备及wireshark USB抓包配置

文章目录 1. 内核配置2. 设备配置附 wireshark USB抓包配置 linux下模拟USB HID设备的简单记录&#xff0c;其他USB设备类似。 1. 内核配置 内核启用USB Gadget&#xff0c;使用fs配置usb device信息。 Device Drivers ---> [*] USB support ---><*> USB …

Ubuntu20.04运行R-VIO2

目录 1.环境配置2.构建项目3. 运行 VIO 模式4.结果图 1.环境配置 CMakeLists.txt中 C 使用 14、opencv使用4 2.构建项目 克隆代码库&#xff1a; 在终端中执行以下命令克隆项目&#xff1a;git clone https://github.com/rpng/R-VIO2.git编译项目&#xff1a; 使用 catkin_m…

基于YOLOv8深度学习的智慧课堂教师上课行为检测系统研究与实现(PyQt5界面+数据集+训练代码)

随着人工智能技术的迅猛发展&#xff0c;智能课堂行为分析逐渐成为提高教学质量和提升教学效率的关键工具之一。在现代教学环境中&#xff0c;能够实时了解教师的课堂表现和行为&#xff0c;对于促进互动式教学和个性化辅导具有重要意义。传统的课堂行为分析依赖于人工观测&…

wireshark基础

免责声明&#xff1a; 笔记的只是方便各位师傅学习知识&#xff0c;以下代码、网站只涉及学习内容&#xff0c;其他的都与本人无关&#xff0c;切莫逾越法律红线&#xff0c;否则后果自负。 泷羽sec官网&#xff1a;https://longyusec.com/ 泷羽sec B站地址&#xff1a;https:/…

单例模式入门

单例模式是一种创建型设计模式&#xff0c; 让你能够保证一个类只有一个实例&#xff0c; 并提供一个访问该实例的全局节点。 它的运作方式是这样的&#xff1a; 如果你创建了一个对象&#xff0c; 同时过一会儿后你决定再创建一个新对象&#xff0c; 此时你会获得之前已创建的…

圆域函数的傅里叶变换和傅里叶逆变换

空域圆域函数的傅里叶变换 空域圆域函数&#xff08;也称为空间中的圆形区域函数&#xff09;通常指的是在二维空间中&#xff0c;以原点为中心、半径为 a a a的圆内取值为1&#xff0c;圆外取值为0的函数。这种函数可以表示为&#xff1a; f ( x , y ) { 1 if x 2 y 2 ≤ …

【大模型】深度解析 NLP 模型5大评估指标及 应用案例:从 BLEU、ROUGE、PPL 到METEOR、BERTScore

在自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;无论是机器翻译、文本生成&#xff0c;还是问答系统开发&#xff0c;模型性能评估指标始终是开发者绕不开的工具。BLEU、ROUGE、PPL&#xff08;困惑度&#xff09;、METEOR 和 BERTScore 是五个最具代表性的指标&am…

黑马程序员Java项目实战《苍穹外卖》Day01

苍穹外卖-day01 课程内容 软件开发整体介绍苍穹外卖项目介绍开发环境搭建导入接口文档Swagger 项目整体效果展示&#xff1a; ​ 管理端-外卖商家使用 ​ 用户端-点餐用户使用 当我们完成该项目的学习&#xff0c;可以培养以下能力&#xff1a; 1. 软件开发整体介绍 作为一…

Java高级特性 - IO流

第1关 什么是IO流 BC,C 第2关 字节流-输入输出 第3关 字符流 - 输入输出 第4关 复制文件