大数据-227 离线数仓 - Flume 自定义拦截器(续接上节) 采集启动日志和事件日志

点一下关注吧!!!非常感谢!!持续更新!!!

Java篇开始了!

目前开始更新 MyBatis,一起深入浅出!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(已更完)
  • ClickHouse(已更完)
  • Kudu(已更完)
  • Druid(已更完)
  • Kylin(已更完)
  • Elasticsearch(已更完)
  • DataX(已更完)
  • Tez(已更完)
  • 数据挖掘(已更完)
  • Prometheus(已更完)
  • Grafana(已更完)
  • 离线数仓(正在更新…)

章节内容

上节我们完成了如下的内容:

  • Flume 自定义拦截器
  • 拦截原理 拦截器实现 Java

在这里插入图片描述

自定义拦截器

(续接上节,上节已经到了打包的部分)

上传结果

将刚才的打包上传到这个目录下:
我拷贝的是带依赖的:“flume-test-1.0-SNAPSHOT-jar-with-dependencies.jar”

/opt/servers/apache-flume-1.9.0-bin/lib/

测试效果

我们创建刚才说的conf文件:

vim /opt/wzk/flume-conf/flumetest1.conf

编写的内容如下图所示:
在这里插入图片描述
启动进行测试:

flume-ng agent --conf-file /opt/wzk/flume-conf/flumetest1.conf -name a1 -Dflume.roog.logger=INFO,console

启动结果如下图所示:
z

我们启动 telnet 来传入数据:

telnet h122.wzk.icu 9999

启动之后输入数据:

2020-07-30 14:18:47.339 [main] INFO com.ecommerce.AppStart - {"app_active":{"name":"app_active","json":{"entry":"1","action":"1","error_code":"0"},"time":1596111888529},"attr":{"area":"泰安","uid":"2F10092A9","app_v":"1.1.13","event_type":"common","device_id":"1FB872-9A1009","os_type":"4.7.3","channel":"DK","language":"chinese","brand":"iphone-9"}}

此时控制台的数据内容部分为:

4/08/27 15:31:31 INFO source.NetcatSource: Source starting
24/08/27 15:31:31 INFO source.NetcatSource: Created serverSocket:sun.nio.ch.ServerSocketChannelImpl[/172.16.1.130:9999]
24/08/27 15:32:09 INFO sink.LoggerSink: Event: { headers:{logtime=2020-07-30} body: 32 30 32 30 2D 30 37 2D 33 30 20 31 34 3A 31 38 2020-07-30 14:18 }

对应的截图如下图所示:
在这里插入图片描述

采集启动日志(使用自定义拦截器)

配置文件

新建一个配置文件:

vim /opt flume-log2hdfs2.conf

写入的内容如下所示:

a1.sources = r1
a1.sinks = k1
a1.channels = c1
# taildir source
a1.sources.r1.type = TAILDIR
a1.sources.r1.positionFile = /opt/wzk/conf/startlog_position.json
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /opt/wzk/logs/start/.*log
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = icu.wzk.CustomerInterceptor$Builder
# memorychannel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 100000
a1.channels.c1.transactionCapacity = 2000
# hdfs sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /user/data/logs/start/dt=%{logtime}/
a1.sinks.k1.hdfs.filePrefix = startlog.
a1.sinks.k1.hdfs.fileType = DataStream
# 配置文件滚动方式(文件大小32M)
a1.sinks.k1.hdfs.rollSize = 33554432
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.rollInterval = 0
a1.sinks.k1.hdfs.idleTimeout = 0
a1.sinks.k1.hdfs.minBlockReplicas = 1
# 向hdfs上刷新的event的个数
a1.sinks.k1.hdfs.batchSize = 1000
# 使用本地时间
# a1.sinks.k1.hdfs.useLocalTimeStamp = true
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

内容的截图如下所示:
在这里插入图片描述
修改的内容如下:

  • 给source增加自定义拦截器
  • 去掉时间戳 a1.sinks.k1.hdfs.useLocalTimeStamp = true
  • 根据header中的logtime写文件

测试运行

flume-ng agent --conf-file /opt/wzk/flume-conf/flume-log2hdfs2.conf -name a1 -Dflume.roog.logger=INFO,console

拷贝日志

修改日志的内容:

vim /opt/wzk/logs/start/test.log

继续写入如下的内容:

2020-07-30 14:18:47.339 [main] INFO com.ecommerce.AppStart - {"app_active":{"name":"app_active","json":{"entry":"1","action":"1","error_code":"0"},"time":1596111888529},"attr":{"area":"泰安","uid":"2F10092A9","app_v":"1.1.13","event_type":"common","device_id":"1FB872-9A1009","os_type":"4.7.3","channel":"DK","language":"chinese","brand":"iphone-9"}}

写入内容如下图所示:
在这里插入图片描述

测试效果

可以看到HDFS上,已经有了读出日志中的时间的内容:
在这里插入图片描述

采集启动日志和事件日志

本系统中要采集两种日志:

  • 启动日志
  • 事件日志
    不同的日志放置在不同的目录下,要想一次拿到全部日志需要监控多个目录。
    在这里插入图片描述

总体思路

  • taildir 监控多个目录
  • 修改自定义拦截器,不同来源的数据加上不同标志
  • HDFS、Sink 根据标志写文件

Agent 介绍

Flume 是一个分布式、高可靠、可用来收集、聚合和传输大量日志数据的系统。在 Flume 的体系结构中,Agent 是一个关键的组件。每个 Agent 是一个独立的 JVM 进程,负责从数据源获取数据并将其传递到下游(如文件系统、数据库、或者另一个 Agent)

Agent 的核心组成部分

Flume Agent 的架构是高度模块化的,它由以下三个核心组件构成:

Source (源)

Source 是数据流的起点,负责接收外部数据。它支持多种数据传输协议和格式,能够从日志文件、网络端口、消息队列等数据源中接收事件。

支持的 Source 类型:

  • Avro Source:接收来自其他 Flume Agent 的 Avro 格式数据。
  • Syslog Source:处理 Syslog 消息。
  • Exec Source:从本地命令或脚本的输出中读取数据。
  • HTTP Source:通过 HTTP 接口接收数据。
  • Spooling Directory Source:监控特定目录中的文件并读取内容。

Channel (通道)

Channel 是 Agent 的数据缓冲区域,用于在 Source 和 Sink 之间暂存事件。Channel 的设计保证了在数据流动中断(如网络故障)时,数据不会丢失。

常见的 Channel 类型:

  • Memory Channel:将事件存储在内存中,速度快,但可能会丢失数据(如果 Agent 崩溃)。
  • File Channel:将事件存储在磁盘文件中,提供高可靠性但性能较低。
  • Kafka Channel:使用 Kafka 作为中转通道,适合分布式场景。

Sink (接收器)

Sink 是数据流的终点,负责将事件传递到下游存储或处理系统。

支持的 Sink 类型:

  • HDFS Sink:将事件写入 Hadoop HDFS。
  • Kafka Sink:将事件发送到 Kafka。
  • Elasticsearch Sink:将事件写入 Elasticsearch。
  • Logger Sink:将事件输出到日志。
  • Avro Sink:将事件传递到另一个 Flume Agent 的 Avro Source。

Agent配置

vim /opt/wzk/flume-conf/flume-log2hdfs3.conf

写入的内容如下图所示:

a1.sources = r1
a1.sinks = k1
a1.channels = c1
# taildir source
a1.sources.r1.type = TAILDIR
a1.sources.r1.positionFile = /opt/wzk/conf/startlog_position.json
a1.sources.r1.filegroups = f1 f2
a1.sources.r1.filegroups.f1 = /opt/wzk/logs/start/.*log
a1.sources.r1.headers.f1.logtype = start
a1.sources.r1.filegroups.f2 = /opt/wzk/logs/event/.*log
a1.sources.r1.headers.f2.logtype = event
# 自定义拦截器
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = icu.wzk.LogTypeInterceptor$Builder
# memorychannel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 100000
a1.channels.c1.transactionCapacity = 2000
# hdfs sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /user/data/logs/%{logtype}/dt=%
{logtime}/
a1.sinks.k1.hdfs.filePrefix = startlog.
a1.sinks.k1.hdfs.fileType = DataStream
# 配置文件滚动方式(文件大小32M)
a1.sinks.k1.hdfs.rollSize = 33554432
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.rollInterval = 0
a1.sinks.k1.hdfs.idleTimeout = 0
a1.sinks.k1.hdfs.minBlockReplicas = 1
# 向hdfs上刷新的event的个数
a1.sinks.k1.hdfs.batchSize = 1000
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
  • filegroups:指定filegroups,可以有多个,以空格分割(taildir source可以同时监控多个目录中的文件)
  • headers.filegroups.headerKey

给Event增加header Key,不同的filegroup,可配置不同的value。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/61109.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【langchain4j】AIservices能够实现更加灵活的chain

文章目录 AI service介绍如何工作的AiServices提供的能力支持的返回形式 简单的例子:接收用户消息,并按规定返回接收单个变量接收更多动态变量 advanced RAGChaining multiple AI Services:多个AiSerives合并到一起相关教程:[Lang…

【UGUI】背包的交互01(道具信息跟随鼠标+道具信息面板显示)

详细程序逻辑过程 初始化物品栏: 在 Awake 方法中,通过标签找到提示框和信息面板。 循环生成10个背包格子,并为每个格子设置图标和名称。 为每个格子添加 UInterMaager232 脚本,以便处理交互事件。 关闭提示框和信息面板&#…

同步互斥相关习题10道 附详解

PV操作 2016 某系统允许最多10个进程同时读文件F,当同时读文件F的进程不满10个时,欲读该文件的其他文件可立即读,当已有10个进程在读文件F时读,其他欲读文件F的进程必须等待,直至有进程读完后退出方可去读 在实现管…

Postman之数据提取

Postman之数据提取 1. 提取请求头\request中的数据2. 提取响应消息\response中的数据3. 通过正在表达式提取4. 提取cookies数据 本文主要讲解利用pm对象对数据进行提取操作,虽然postman工具的页面上也提供了一部分的例子,但是实际使用时不是很全面&#…

【专题】数据库原理与应用之故障恢复

1. 数据库故障恢复概述 数据库的可恢复性: DBMS能把数据库从被破坏、不正确的状态、恢复到最近一个正确的状态。 恢复管理任务的种类: 一是在未发生故障而系统正常运行时,采取一些必要措施为恢复工作打基础。 二是在发生故障后进行恢复处…

EXCEL 或 WPS 列下划线转驼峰

使用场景: 需要将下划线转驼峰,直接在excel或wps中第一行使用公式,然后快速刷整个列格式即可。全列工下划线转为格式,使用效果如下: 操作步骤: 第一步:在需要显示驼峰的一列,复制以…

MODBUS TCP转CANOpen网关

Modbus TCP转CANopen网关 型号:SG-TCP-COE-210 产品用途 本网关可以实现将CANOpen接口设备连接到MODBUS TCP网络中;并且用户不需要了解具体的CANOpen和Modbus TCP 协议即可实现将CANOpen设备挂载到MODBUS TCP接口的 PLC上,并和CANOpen设备…

分布式----Ceph部署

目录 一、存储基础 1.1 单机存储设备 1.2 单机存储的问题 1.3 商业存储解决方案 1.4 分布式存储(软件定义的存储 SDS) 1.5 分布式存储的类型 二、Ceph 简介 三、Ceph 优势 四、Ceph 架构 五、Ceph 核心组件 #Pool中数据保存方式支持两种类型&…

自动驾驶系列—面向自动驾驶的模型迭代:工具、平台与最佳实践

🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中…

Spring Boot3自定义starter

1、加入必要依赖 plugins {id javaid org.springframework.boot version 3.2.6id io.spring.dependency-management version 1.1.5 } group org.example.test.starter version 1.1.0jar{enabledtrue// resolveMainClassName }java {toolchain {languageVersion JavaLanguage…

AI开发-计算机视觉库-OpenCV

1 需求 官网:OpenCV - Open Computer Vision Library 2 接口 3 示例 import cv2image cv2.imread("./data/train/1_1.jpg") print(type(image)) 4 参考资料

delphi fmx android 离线人脸识别

搜遍全网都没有找到delphi android 能用的 离线人脸识别,无需注册什么开发者 有这方面需求的可以用fsdk 这边用的luxand.FSDK8.0 android下的注册号要自己找下 1,用老猫的工具将android 下的sdk,FSDK.java 编译成FSDK.jar 老猫的工具 2,用上面的工具将FSDK.jar 生成de…

RabbitMQ教程:工作队列(Work Queues)(二)

RabbitMQ教程:工作队列(Work Queues)(二) 一、引言 在快节奏的软件开发世界中,我们经常面临需要异步处理任务的场景,比如在Web应用中处理耗时的图片处理或数据分析任务。这些任务如果直接在用…

乐维网管平台(七):网络稳定与高效的“安全锦囊”

试想一下,你给电脑升级了一个软件,升级完成后发现有BUG,经常无故卡死,这时候想回退或重新安装旧版本…相对地,一家企业的网络管理员,在对公司的核心交换机进行复杂的配置调整时,一个小小的疏忽&…

时代变迁对传统机器人等方向课程的巨大撕裂

2020年之后,全面转型新质课程规划,传统课程规划全部转为经验。 农耕-代表性生产关系-封建分配制度主要生产力-人力工业-代表性生产关系-资本分配制度工业分为机械时代,电气时代,信息时代;主要生产力-人力转为人脑&…

Spring6 AOP 面向切面编程

1. 概念 面向切面编程:一种编程思想。proxy动态代理(实现了这种思想):在原方法执行时,给原方法的前面或着后面增加其他的方法。增加的方法并不会写在原方法中 原方法就是目标方法,增加的方法就是代理方法 …

计算机组成与原理(2) basic of computer architecture

Instruction Set Architecture (ISA) 和 Hardware System Architecture (HSA) 是计算机体系结构中两个重要的层次,它们各自的职责和作用如下: Instruction Set Architecture (ISA) 定义 ISA是指令集体系结构,是硬件和软件之间的接口。它定义…

window的wsl(Ubuntu)安装kafka步骤

环境:Win11 WSL(Linux子系统Ubuntu) apache-zookeeper-3.9.3-bin kafka_2.12-3.8.1 思路:apache上分别下载zookeeper和kafka,在wsl环境安装。在kafka上创建消息的topic,发送消息,接受消息,验证是否安…

数据结构树和二叉树知识点和递归序列

二叉树知识点 一.树的概念1.1关于树的名词解释 二.二叉树的概念1. 二叉树性质: 三.满二叉树与完全二叉树递归前序遍历递归中序遍历递归后续遍历 一.树的概念 树是一种非线性数据结构,它是由n个或大于n个的结点来组成具有层次关系的一个集合(…

速通前端篇 —— CSS

找往期文章包括但不限于本期文章中不懂的知识点: 个人主页:我要学编程程(ಥ_ಥ)-CSDN博客 所属专栏:速通前端 目录 CSS的介绍 基本语法规范 CSS选择器 标签选择器 class选择器 id选择器 复合选择器 通配符选择器 CSS常见样式 颜…