OpenCV4.9去运动模糊滤镜(68)

 返回:OpenCV系列文章目录(持续更新中......)
上一篇:OpenCV4.9失焦去模糊滤镜(67)
下一篇 :OpenCV系列文章目录(持续更新中......)

目标

在本教程中,您将学习:

  • 运动模糊图像的 PSF 是多少
  • 如何恢复运动模糊图像

理论

对于退化图像模型理论和维纳滤波理论,您可以参考教程失焦去模糊滤镜。在此页面上,仅考虑线性运动模糊失真。此页面上的运动模糊图像是真实世界的图像。模糊是由移动的主体引起的。

运动模糊图像的 PSF 是多少?

线性运动模糊失真的点扩散函数(PSF) 是线段。这样的 PSF 由两个参数指定:(LEN)是模糊的长度,(THETA)是运动角度。

线性运动模糊失真的点扩散函数

如何恢复模糊的图像?

在此页面上,Wiener 滤镜用作恢复滤镜,有关详细信息,您可以参考教程失焦去模糊滤镜。为了在运动模糊情况下合成维纳滤波器,它需要指定PSF的信噪比(SNR)、(LEN)和(THETA)。

源代码

您可以在 OpenCV 源代码库中找到源代码。samples/cpp/tutorial_code/ImgProc/motion_deblur_filter/motion_deblur_filter.cpp

#include <iostream>
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"using namespace cv;
using namespace std;void help();
void calcPSF(Mat& outputImg, Size filterSize, int len, double theta);
void fftshift(const Mat& inputImg, Mat& outputImg);
void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H);
void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr);
void edgetaper(const Mat& inputImg, Mat& outputImg, double gamma = 5.0, double beta = 0.2);const String keys =
"{help h usage ? | | print this message }"
"{image |input.png | input image name }"
"{LEN |125 | length of a motion }"
"{THETA |0 | angle of a motion in degrees }"
"{SNR |700 | signal to noise ratio }"
;int main(int argc, char *argv[])
{help();CommandLineParser parser(argc, argv, keys);if (parser.has("help")){parser.printMessage();return 0;}int LEN = parser.get<int>("LEN");double THETA = parser.get<double>("THETA");int snr = parser.get<int>("SNR");string strInFileName = parser.get<String>("image");if (!parser.check()){parser.printErrors();return 0;}Mat imgIn;imgIn = imread(strInFileName, IMREAD_GRAYSCALE);if (imgIn.empty()) //check whether the image is loaded or not{cout << "ERROR : Image cannot be loaded..!!" << endl;return -1;}Mat imgOut;// it needs to process even image onlyRect roi = Rect(0, 0, imgIn.cols & -2, imgIn.rows & -2);//Hw calculation (start)Mat Hw, h;calcPSF(h, roi.size(), LEN, THETA);calcWnrFilter(h, Hw, 1.0 / double(snr));//Hw calculation (stop)imgIn.convertTo(imgIn, CV_32F);edgetaper(imgIn, imgIn);// filtering (start)filter2DFreq(imgIn(roi), imgOut, Hw);// filtering (stop)imgOut.convertTo(imgOut, CV_8U);normalize(imgOut, imgOut, 0, 255, NORM_MINMAX);imwrite("result.jpg", imgOut);return 0;
}void help()
{cout << "2018-08-14" << endl;cout << "Motion_deblur_v2" << endl;cout << "You will learn how to recover an image with motion blur distortion using a Wiener filter" << endl;
}void calcPSF(Mat& outputImg, Size filterSize, int len, double theta)
{Mat h(filterSize, CV_32F, Scalar(0));Point point(filterSize.width / 2, filterSize.height / 2);ellipse(h, point, Size(0, cvRound(float(len) / 2.0)), 90.0 - theta, 0, 360, Scalar(255), FILLED);Scalar summa = sum(h);outputImg = h / summa[0];
}void fftshift(const Mat& inputImg, Mat& outputImg)
{outputImg = inputImg.clone();int cx = outputImg.cols / 2;int cy = outputImg.rows / 2;Mat q0(outputImg, Rect(0, 0, cx, cy));Mat q1(outputImg, Rect(cx, 0, cx, cy));Mat q2(outputImg, Rect(0, cy, cx, cy));Mat q3(outputImg, Rect(cx, cy, cx, cy));Mat tmp;q0.copyTo(tmp);q3.copyTo(q0);tmp.copyTo(q3);q1.copyTo(tmp);q2.copyTo(q1);tmp.copyTo(q2);
}void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H)
{Mat planes[2] = { Mat_<float>(inputImg.clone()), Mat::zeros(inputImg.size(), CV_32F) };Mat complexI;merge(planes, 2, complexI);dft(complexI, complexI, DFT_SCALE);Mat planesH[2] = { Mat_<float>(H.clone()), Mat::zeros(H.size(), CV_32F) };Mat complexH;merge(planesH, 2, complexH);Mat complexIH;mulSpectrums(complexI, complexH, complexIH, 0);idft(complexIH, complexIH);split(complexIH, planes);outputImg = planes[0];
}void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr)
{Mat h_PSF_shifted;fftshift(input_h_PSF, h_PSF_shifted);Mat planes[2] = { Mat_<float>(h_PSF_shifted.clone()), Mat::zeros(h_PSF_shifted.size(), CV_32F) };Mat complexI;merge(planes, 2, complexI);dft(complexI, complexI);split(complexI, planes);Mat denom;pow(abs(planes[0]), 2, denom);denom += nsr;divide(planes[0], denom, output_G);
}void edgetaper(const Mat& inputImg, Mat& outputImg, double gamma, double beta)
{int Nx = inputImg.cols;int Ny = inputImg.rows;Mat w1(1, Nx, CV_32F, Scalar(0));Mat w2(Ny, 1, CV_32F, Scalar(0));float* p1 = w1.ptr<float>(0);float* p2 = w2.ptr<float>(0);float dx = float(2.0 * CV_PI / Nx);float x = float(-CV_PI);for (int i = 0; i < Nx; i++){p1[i] = float(0.5 * (tanh((x + gamma / 2) / beta) - tanh((x - gamma / 2) / beta)));x += dx;}float dy = float(2.0 * CV_PI / Ny);float y = float(-CV_PI);for (int i = 0; i < Ny; i++){p2[i] = float(0.5 * (tanh((y + gamma / 2) / beta) - tanh((y - gamma / 2) / beta)));y += dy;}Mat w = w2 * w1;multiply(inputImg, w, outputImg);
}

解释

运动模糊图像恢复算法包括 PSF 生成、Wiener 滤波器生成和滤除频域中的模糊图像:

 // it needs to process even image onlyRect roi = Rect(0, 0, imgIn.cols & -2, imgIn.rows & -2);//Hw calculation (start)Mat Hw, h;calcPSF(h, roi.size(), LEN, THETA);calcWnrFilter(h, Hw, 1.0 / double(snr));//Hw calculation (stop)imgIn.convertTo(imgIn, CV_32F);edgetaper(imgIn, imgIn);// filtering (start)filter2DFreq(imgIn(roi), imgOut, Hw);// filtering (stop)

函数 edgetaper()会逐渐缩小输入图像的边缘,以减少恢复图像中的振铃效应:

void edgetaper(const Mat& inputImg, Mat& outputImg, double gamma, double beta)
{int Nx = inputImg.cols;int Ny = inputImg.rows;Mat w1(1, Nx, CV_32F, Scalar(0));Mat w2(Ny, 1, CV_32F, Scalar(0));float* p1 = w1.ptr<float>(0);float* p2 = w2.ptr<float>(0);float dx = float(2.0 * CV_PI / Nx);float x = float(-CV_PI);for (int i = 0; i < Nx; i++){p1[i] = float(0.5 * (tanh((x + gamma / 2) / beta) - tanh((x - gamma / 2) / beta)));x += dx;}float dy = float(2.0 * CV_PI / Ny);float y = float(-CV_PI);for (int i = 0; i < Ny; i++){p2[i] = float(0.5 * (tanh((y + gamma / 2) / beta) - tanh((y - gamma / 2) / beta)));y += dy;}Mat w = w2 * w1;multiply(inputImg, w, outputImg);
}

函数 calcWnrFilter()、fftshift()和 filter2DFreq()在频域中通过指定的 PSF 实现图像滤波。这些函数是从教程失焦去模糊滤镜中复制的。.

结果

下面您可以看到具有运动模糊失真的真实世界图像。两辆车的车牌都不可读。红色标记显示汽车的车牌位置。

下面可以看到黑色车牌的恢复结果。计算结果时,(LEN)= 125,(THETA\)= 0,(SNR)= 700。

下面可以看到白色车牌的恢复结果。计算结果时,(LEN)= 78,(THETA)= 15,(SNR) = 300.

(SNR)、(LEN)和(THETA)的值是手动选择的,以提供最佳的视觉效果。(THETA)参数与汽车的移动方向一致,(LEN)参数取决于汽车的移动速度。结果并不完美,但至少它给了我们图像内容的提示。经过一番努力,车牌现在清晰可辨。

注意

参数(LEN)和(THETA)是最重要的。您应该先调整(LEN)和(THETA\),然后调整 \(SNR\)。

您还可以在YouTube上找到车牌恢复方法的快速视频演示。

参考文献:

1、《Motion Deblur Filter》-------Karpushin Vladislav

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/6085.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【千帆平台】使用AppBuilder三步手搓应用创建精准多轮对话agent之K12互动式练习题

欢迎来到《小5讲堂》 这是《千帆平台》系列文章&#xff0c;每篇文章将以博主理解的角度展开讲解。 温馨提示&#xff1a;博主能力有限&#xff0c;理解水平有限&#xff0c;若有不对之处望指正&#xff01; 目录 前言创建应用应用头像应用名称应用描述角色指令能力扩展开场白 …

【Web】CTFSHOW 新手杯 题解

目录 easy_eval 剪刀石头布 baby_pickle repairman easy_eval 用script标签来绕过 剪刀石头布 需要赢100轮&#x1f914; 右键查看源码拿到提示 一眼session反序列化 打PHP_SESSION_UPLOAD_PROGRESS 脚本 import requestsp1 a|O:4:"Game":1:{s:3:"log…

ubuntu与redhat的不同之处

华子目录 什么是ubuntu概述 ubuntu版本简介桌面版服务器版 安装部署部署后的设置设置root密码关闭防火墙启用允许root进行ssh登录更改apt源安装所需软件 网络配置Netplan概述配置详解配置文件DHCP静态IP设置设置 软件安装方法apt安装软件作用常用命令配置apt源 deb软件包安装概…

EasyExcel 处理 Excel

序言 本文介绍在日常的开发中&#xff0c;如何使用 EasyExcel 高效处理 Excel。 一、EasyExcel 是什么 EasyExcel 是阿里巴巴开源的一个 Java Excel 操作类库&#xff0c;它基于 Apache POI 封装了简单易用的 API&#xff0c;使得我们能够方便地读取、写入 Excel 文件。Easy…

selenium 4.x 之验证码处理(python)

验证码处理 一般情况公司如果涉及web自动化测试需要对验证码进行处理的方式一般有一下几种&#xff1a; 关闭验证码功能&#xff08;开发处理&#xff09;设置万能验证码&#xff08;开发处理&#xff09;使用智能识别库进行验证 通过第三方打码平台识别验证码 1. 跳过验证功…

【目标检测】DEtection TRansformer (DETR)

一、前言 论文&#xff1a; End-to-End Object Detection with Transformers 作者&#xff1a; Facebook AI 代码&#xff1a; DEtection TRansformer (DETR) 特点&#xff1a; 无proposal&#xff08;R-CNN系列&#xff09;、无anchor&#xff08;YOLO系列&#xff09;、无NM…

C++入门基础(三)

这里写目录标题 引用引用概念例子1例子2例子3例子4 常引用引用的应用做参数做返回值野引用扩展 传值、传引用效率比较引用和指针的区别C对比C语言实现顺序表 内联函数概念特性 &#x1f412;&#x1f412;&#x1f412; 个人主页 &#x1f978;&#x1f978;&#x1f978; C语…

dnf游戏攻略:保姆级游戏攻略!

欢迎来到DNF&#xff0c;一个扣人心弦的2D横版格斗游戏世界&#xff01;无论你是新手还是老玩家&#xff0c;这篇攻略都将为你提供宝贵的游戏技巧和策略&#xff0c;助你在游戏中大展身手&#xff0c;成为一名强大的冒险者。 一、角色选择 在DNF中&#xff0c;角色的选择至关重…

量子城域网建设案例分析(一):广西量子通信技术试验平台

对量子城域网的讨论已经有一段时间了&#xff0c;经过近期系列文章的讨论&#xff0c;我们对城域网的整体情况、关键技术以及核心设备等都有了一些基本的认识&#xff0c;今天我计划对广西量子通信技术试验平台构建与应用研究服务采购项目进行讨论&#xff0c;通过对实际案例的…

IoTDB 入门教程⑤——数据模型和基础概念

文章目录 一、前文二、数据模型2.1 关系型数据库MySQL。2.2 时序数据库TDengine2.3 时序数据库InfluxDB2.4 时序数据库IoTDB&#xff08;本专栏的正主&#xff09; 三、基础概念3.1 数据库&#xff08;Database&#xff09;3.2 设备模板&#xff08;元数据模板&#xff09;3.3 …

C语言——小知识和小细节17

一、未能给指针成功赋值 #include <stdio.h> #include <stdlib.h> #include <string.h>void GetMemory(char* p) {p (char*)malloc(20 * sizeof(char)); }void Test() {char* str NULL;GetMemory(str);strcpy(str, "Hello World!");printf(&quo…

IDA pro动态调试so层初级教程

一、开启服务 adb push D:\MyApp\IDA_Pro_7.7\dbgsrv\android_server64 /data/local/tmpadb shell cd /data/local/tmp chmod 777 android_server64 ./android_server64二、IDA附加进程 十万个注意&#xff1a;IDA打开的so文件路径不能有中文 手机打开要调试的app 附加成功

合泰杯(HT32F52352)RTC的应用(计时)--->掉电不丢失VBAT(代码已经实现附带源码)

摘要 在HT32F52352合泰单片机开发中&#xff0c;rtc在网上还是挺少人应用的&#xff0c;找了很久没什么资料&#xff0c;现在我根据手册和官方的代码进行配置理解。 RTC在嵌入式单片机中是一个很重要的应用资源。 记录事件时间戳&#xff1a;RTC可以记录事件发生的精确时间&…

DRF解析器源码分析

DRF解析器源码分析 1 解析器 解析请求者发来的数据&#xff08;JSON&#xff09; 使用 request.data 获取请求体中的数据。 这个 reqeust.data 的数据怎么来的呢&#xff1f;其实在drf内部是由解析器&#xff0c;根据请求者传入的数据格式 请求头来进行处理。 drf默认的解…

计算机408备考-数据结构重要知识点-数据结构的定义

请关注一下B站账号&#xff1a;谭同学很nice&#xff01;后期更新发布在这个账号上。。【计算机408备考-数据结构重要知识点-数据结构的定义-哔哩哔哩】https://b23.tv/x7shjNf 数据是信息的载体。数据元素是数据的基本单位。一个数据元素可由若干数据项组成&#xff0c;数据项…

在离线环境中将 CentOS 7.5 原地升级并迁移至 RHEL 7.9

《OpenShift / RHEL / DevSecOps 汇总目录》 说明 本文将说明如何在离线环境中将 CentOS 7.5 升级并迁移至 RHEL 7.9。为了简化准备过程&#xff0c;本文前面将在在线环境中安装用到的各种所需验证软件&#xff0c;而在后面升级迁移的时候再切换到由 ISO 构成的离线 Yum Repo…

实现优先队列——C++

目录 1.优先队列的类模板 2.仿函数的讲解 3.成员变量 4.构造函数 5。判空&#xff0c;返回size&#xff0c;返回队头 6.插入 7.删除 1.优先队列的类模板 我们先通过模板来进行初步了解 由上图可知&#xff0c;我们的模板里有三个参数&#xff0c;第一个参数自然就是你要存储的数…

使用Android Studio 搭建AOSP FrameWork 源码阅读开发环境

文章目录 概述安装Android Studio编译源码使用Android Studio打开源码制作ipr文件直接编译成功后自动打开Android Studio 修改SystemUI验证开发环境 概述 我们都知道Android的系统源码量非常之大&#xff0c;大致有frameworka层源码&#xff0c;硬件层(HAL)源码&#xff0c;内…

Java高阶私房菜:JVM分代收集算法介绍和各垃圾收集器原理分解

目录 什么是分代收集算法 GC的分类和专业术语 什么是垃圾收集器 垃圾收集器的分类及组合 ​编辑 应关注的核心指标 Serial和ParNew收集器原理 Serial收集器 ParNew收集器 Parallel和CMS收集器原理 Parallel 收集器 CMS收集器 新一代垃圾收集器G1和ZGC G1垃圾收集器…

今日早报 每日精选15条新闻简报 每天一分钟 知晓天下事 5月3日,星期五

每天一分钟&#xff0c;知晓天下事&#xff01; 2024年5月3日 星期五 农历三月廿五 1、 气象台&#xff1a;我国南方地区3至5日将出现新一轮较强降水&#xff0c;局地有大暴雨。 2、 广东11地市打破4月雨量历史记录&#xff1a;梅州平均雨量为常年3.5倍。 3、 梅大高速路面塌…