一文熟悉新版llama.cpp使用并本地部署LLAMA

0. 简介

最近是快到双十一了再给大家上点干货。去年我们写了一个大模型的系列,经过一年,大模型的发展已经日新月异。这一次我们来看一下使用llama.cpp这个项目,其主要解决的是推理过程中的性能问题。主要有两点优化:

  • llama.cpp 使用的是 C 语言写的机器学习张量库 ggml
  • llama.cpp 提供了模型量化的工具
    在这里插入图片描述

此项目的牛逼之处就是没有GPU也能跑LLaMA模型。llama.cpp是一个不同的生态系统,具有不同的设计理念,旨在实现轻量级、最小外部依赖、多平台以及广泛灵活的硬件支持:

  • 纯粹的C/C++实现,没有外部依赖

  • 支持广泛的硬件:

    • x86_64 CPU的AVX、AVX2和AVX512支持
    • 通过Metal和Accelerate支持Apple Silicon(CPU和GPU)
    • NVIDIA GPU(通过CUDA)、AMD GPU(通过hipBLAS)、Intel GPU(通过SYCL)、昇腾NPU(通过CANN)和摩尔线程GPU(通过MUSA)
    • GPU的Vulkan后端
  • 多种量化方案以加快推理速度并减少内存占用

  • CPU+GPU混合推理,以加速超过总VRAM容量的模型

llama.cpp 提供了大模型量化的工具,可以将模型参数从 32 位浮点数转换为 16 位浮点数,甚至是 8、4 位整数。除此之外,llama.cpp 还提供了服务化组件,可以直接对外提供模型的 API 。

这里最近受到优刻得的使用邀请,正好解决了我在大模型和自动驾驶行业对GPU的使用需求。UCloud云计算旗下的Compshare的GPU算力云平台。他们提供高性价比的4090 GPU,按时收费每卡1.88元,并附带200G的免费磁盘空间。暂时已经满足我的使用需求了,同时支持访问加速,独立IP等功能,能够更快的完成项目搭建。此外对于低性能的还有3080TI使用只需要0.88元,已经吊打市面上主流的云服务器了

在这里插入图片描述
这里已经提供了我们本项目使用镜像,方便读者快速复现
的

1. llama.cpp环境安装

克隆仓库并进入该目录:

git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp

构建GPU执行环境,确保安装CUDA工具包,适用于有GPU的操作系统

如果CUDA设置正确,那么执行nvidia-smi、nvcc --version没有错误提示,则表示一切设置正确。

mkdir build
sudo apt-get install make cmake gcc g++ locate
cmake -B build -DGGML_CUDA=ON
cmake --build build --config Release -j4
cd build
make install

在这里插入图片描述

在当前版本(截至2024年11月10日)这些指令分别被重命名为llama-quantize、llama-cli、llama-server。

ln -s your/path/to/llama.cpp/build/bin/llama-quantize llama-quantize
ln -s your/path/to/llama.cpp/build/bin/llama-server llama-server
ln -s your/path/to/llama.cpp/build/bin/llama-cli llama-cli

2. LLAMA模型转换

这里我们会从pth开始,一步步给出我们怎么将模型应用到llama.cpp中的。

2.1 pth原始模型处理

首先安装高版本python 3.10

pip install protobuf==3.20.0
pip install transformers  #最新版
pip installsentencepiece #(0.1.97测试通过)
pip install peft  #(0.2.0测试通过)
pip install git+https://github.com/huggingface/transformers
pip install sentencepiece
pip install peft
2.1.1 磁链下载

然后下载原版LLaMA模型的权重和tokenizer.model文件。如果嫌从官方下载太麻烦,网上也有一些泄露的模型版本可以直接下载。

这里应该是最早泄漏的版本,可以使用 IPFS 客户端 进行下载。

社区里也有人制作了种子,可以使用 BitTorrent 下载,磁链地址为 magnet:?xt=urn:btih:ZXXDAUWYLRUXXBHUYEMS6Q5CE5WA3LVA&dn=LLaMA

sudo apt update
sudo apt install transmission-cli
transmission-cli "magnet:?xt=urn:btih:ZXXDAUWYLRUXXBHUYEMS6Q5CE5WA3LVA&dn=LLaMA"

压缩包内文件目录如下(LLaMA-7B为例)

├── llama-7b
│   ├── consolidated.00.pth
│   ├── params.json
│   └── checklist.chk
└── tokenizer.model
2.1.2 使用 pyllama 下载

另一种下载 Llama 模型的方法是使用 pyllama 库。首先,通过 pip 安装它(非M2芯片):

pip3 install transformers pyllama -U

然后通过下面的命令下载 Llama 7B 模型(根据需要你也可以下载 13B、30B 和 65B,如果不指定 --model_size 则下载所有):

python3 -m llama.download --model_size 7B

在 Mac M2 下可能会遇到下面这样的报错:

ImportError: dlopen(/Library/Python/3.9/site-packages/_itree.cpython-39-darwin.so, 0x0002): tried: '/Library/Python/3.9/site-packages/_itree.cpython-39-darwin.so' (mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64')), '/System/Volumes/Preboot/Cryptexes/OS/Library/Python/3.9/site-packages/_itree.cpython-39-darwin.so' (no such file), '/Library/Python/3.9/site-packages/_itree.cpython-39-darwin.so' (mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64'))

根据 itree 的官方文档,这个库我们需要自己手动构建:

brew install cmake
pip3 install https://github.com/juncongmoo/itree/archive/refs/tags/v0.0.18.tar.gz

安装完成后,再次下载,这次虽然没有报错,但是模型的下载目录 pyllama_data 却是空的,根据 这里 的解决方案,我们使用源码重新安装 pyllama:

pip3 uninstall pyllama
git clone https://github.com/juncongmoo/pyllama
pip3 install -e pyllama

然后再次下载即可,7B 模型文件大约 13G,下载速度取决于你的网速,成功后输出如下:

python3 -m llama.download --model_size 7B
❤️  Resume download is supported. You can ctrl-c and rerun the program to resume the downloadingDownloading tokenizer...
✅ pyllama_data/tokenizer.model
✅ pyllama_data/tokenizer_checklist.chk
tokenizer.model: OKDownloading 7Bdownloading file to pyllama_data/7B/consolidated.00.pth ...please wait for a few minutes ...
✅ pyllama_data/7B/consolidated.00.pth
✅ pyllama_data/7B/params.json
✅ pyllama_data/7B/checklist.chkChecking checksums for the 7B model
consolidated.00.pth: OK
params.json: OK
2.1.3 脚本下载(作者使用的这个方法)
#!/bin/bash
# Function to handle stopping the script
function stop_script() {echo "Stopping the script."exit 0
}
# Register the signal handler
trap stop_script SIGINT
while true; do# Run the command with a timeout of 200 secondstimeout 2000  python -m llama.download --model_size $1 --folder modelecho "restart download"sleep 1  # Wait for 1 second before starting the next iteration
# Wait for any key to be pressed within a 1-second timeoutread -t 1 -n 1 -s keyif [[ $key ]]; thenstop_scriptfi
done

之后运行该文件即可自动执行(漫长等待ing)

bash llama_download.sh 7B

在这里插入图片描述

下载后一共有 5 个文件:

pyllama_data
|-- 7B
|   |-- checklist.chk
|   |-- consolidated.00.pth
|   `-- params.json
|-- tokenizer.model
`-- tokenizer_checklist.chk

2.2 原版转为hf格式文件

2.2.1 hf格式转换

这里使用transformers提供的脚本convert_llama_weights_to_hf.py将原版LLaMA模型转换为HuggingFace格式。或者直接在抱抱脸上下载

git clone https://huggingface.co/luodian/llama-7b-hf ./models/Llama-7b-chat-hf

将原版LLaMA的tokenizer.model放在--input_dir指定的目录,其余文件放在${input_dir}/${model_size}下。 执行以下命令后,--output_dir中将存放转换好的HF版权重。

git clone https://github.com/huggingface/transformers.git
cd transformers
python src/transformers/models/llama/convert_llama_weights_to_hf.py \--input_dir /workspace/pth_model/7B \--model_size 7B \--output_dir /workspace/hf_data

--output_dir目录下会生成HF格式的模型文件,诸如:

config.json
generation_config.json
pytorch_model-00001-of-00002.bin
pytorch_model-00002-of-00002.bin
pytorch_model.bin.index.json
special_tokens_map.json
tokenizer_config.json
tokenizer.json
tokenizer.model

在这里插入图片描述

2.2.2 合并lora

这里我们选择了Chinese-LLaMA-Alpaca作为lora合并的操作。然后我们需要合并LoRA权重,生成全量模型权重。这里我们使用ymcui/Chinese-LLaMA-Alpaca at v2.0 (github.com)里面的scripts/merge_llama_with_chinese_lora.py脚本

git clone https://github.com/ymcui/Chinese-LLaMA-Alpaca.git

对原版LLaMA模型(HF格式)扩充中文词表,并与LoRA权重进行合并,生成全量模型权重consolidated.*.pth(建议检查生成模型的SHA256值)和配置文件params.json。请执行以下命令:
在这里插入图片描述

此处输入使用scripts/merge_llama_with_chinese_lora.py脚本,对原版LLaMA模型(HF格式)扩充中文词表,并与LoRA权重进行合并,生成全量模型权重consolidated.*.pth(建议检查生成模型的SHA256值)和配置文件params.json。需要保证以上两个脚本所需参数一致,仅输出文件格式不同。下面以生成PyTorch版本权重为例,介绍相应的参数设置。

python scripts/merge_llama_with_chinese_lora.py \--base_model /workspace/hf_data \--lora_model /workspace/chinese_llama_lora_7b \--output_dir /workspace/lora_pth_data

--base_model:存放HF格式的LLaMA模型权重和配置文件的目录(Step 1生成)

--lora_model:中文LLaMA/Alpaca LoRA解压后文件所在目录,也可使用Model Hub模型调用名称:ziqingyang/chinese-alpaca-lora-7bziqingyang/chinese-llama-lora-7b

--output_type: 指定输出格式,可为pthhuggingface。若不指定,默认为pth

--output_dir:指定保存全量模型权重的目录,默认为./(可选)

--offload_dir(仅对旧脚本scripts/merge_llama_with_chinese_lora.py有效): 对于低内存用户需要指定一个offload缓存路径(可选)

如果出现下面的错误
在这里插入图片描述
则将/workspace/chinese_llama_lora_7b下的adapter_config.json删除lora内容
在这里插入图片描述
转换结果:
在这里插入图片描述
在转换完毕后,如有需要,可自行按照2.2.1节中的脚本将本步骤生成的.pth文件转换为HuggingFace格式。

2.3 hf转guff模型

之前的convert.py 已被移至 examples/convert_legacy_llama.py,并且不应用于 Llama/Llama2/Mistral 模型及其衍生品以外的任何用途。它不支持 LLaMA 3,您可以使用 convert_hf_to_gguf.py 来处理从 Hugging Face 下载的 LLaMA 3。这里我们对模型进行转化,将其转化为gguf格式并进行量化,在llama.cpp路径下:

# 请参考并替换为自己的对应路径,记得创建/workspace/chinese_gguf/llama-7b.gguf这个文件。其中outtype 是指下面的量化精度,其实不需要转,可以使用下面的指令转
python convert_hf_to_gguf.py ../hf_data --outfile /workspace/chinese_gguf/llama-7b.gguf --outtype q8_0#如果是pth则是
python3 examples/convert_legacy_llama.py  /workspace/lora_pth_data/ --outfile  /workspace/chinese_gguf/chinese.gguf

在这里插入图片描述

pth 版本
在这里插入图片描述
hf版本

# llama-quantize 提供各种精度的量化
#./llama-quantize
#usage: ./quantize [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]
#  --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit
#  --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing# Allowed quantization types:
#   2  or  Q4_0   :  3.56G, +0.2166 ppl @ LLaMA-v1-7B
#   3  or  Q4_1   :  3.90G, +0.1585 ppl @ LLaMA-v1-7B
#   8  or  Q5_0   :  4.33G, +0.0683 ppl @ LLaMA-v1-7B
#   9  or  Q5_1   :  4.70G, +0.0349 ppl @ LLaMA-v1-7B
#  10  or  Q2_K   :  2.63G, +0.6717 ppl @ LLaMA-v1-7B
#  12  or  Q3_K   : alias for Q3_K_M
#  11  or  Q3_K_S :  2.75G, +0.5551 ppl @ LLaMA-v1-7B
#  12  or  Q3_K_M :  3.07G, +0.2496 ppl @ LLaMA-v1-7B
#  13  or  Q3_K_L :  3.35G, +0.1764 ppl @ LLaMA-v1-7B
#  15  or  Q4_K   : alias for Q4_K_M
#  14  or  Q4_K_S :  3.59G, +0.0992 ppl @ LLaMA-v1-7B
#  15  or  Q4_K_M :  3.80G, +0.0532 ppl @ LLaMA-v1-7B
#  17  or  Q5_K   : alias for Q5_K_M
#  16  or  Q5_K_S :  4.33G, +0.0400 ppl @ LLaMA-v1-7B
#  17  or  Q5_K_M :  4.45G, +0.0122 ppl @ LLaMA-v1-7B
#  18  or  Q6_K   :  5.15G, -0.0008 ppl @ LLaMA-v1-7B
# 7  or  Q8_0   :  6.70G, +0.0004 ppl @ LLaMA-v1-7B
#  1  or  F16    : 13.00G              @ 7B
#   0  or  F32    : 26.00G              @ 7B
# 2. 使用llama-quantize 转换精度
# llama-quantize支持的精度以及更多的使用方法可通过llama-quantize --help查看
llama-quantize /workspace/chinese_gguf/chinese.gguf /workspace/chinese_gguf/chinese_q4_0.gguf Q4_0

在这里插入图片描述

转换完成后,模型目录下会多一个 chinese_q4_0.gguf 文件:

ls -lh /workspace/chinese_gguf

在这里插入图片描述

3. 使用 llama.cpp 运行 GGUF 模型

这里我们可以通过上面的操作,或者去 https://huggingface.co/models 找 GGUF 格式的大模型版本,下载模型文件放在 llama.cpp 项目 models 目录下。

git clone https://huggingface.co/rozek/LLaMA-2-7B-32K-Instruct_GGUF ./models/LLaMA-2-7B-32K-Instruct_GGUF

仓库中包含各种量化位数的模型,Q2、Q3、Q4、Q5、Q6、Q8、F16。量化模型的命名方法遵循: “Q” + 量化比特位 + 变种。量化位数越少,对硬件资源的要求越低,但是模型的精度也越低。

3.1 交互模式

可通过llama-cli或llama-server运行模型。

llama-cli -m chinese_q4_0.gguf -p "you are a helpful assistant" -cnv -ngl 24

在这里插入图片描述

其中:

  • -m参数后跟要运行的模型
  • -cnv表示以对话模式运行模型
  • -ngl:当编译支持 GPU 时,该选项允许将某些层卸载到 GPU 上进行计算。一般情况下,性能会有所提高。

其他参数详见官方文档llama.cpp/examples/main/README.md at master · ggerganov/llama.cpp (github.com)

3.2 模型API服务

llama.cpp提供了完全与OpenAI API兼容的API接口,使用经过编译生成的llama-server可执行文件启动API服务。如果编译构建了GPU执行环境,可以使用-ngl N--n-gpu-layers N参数,指定offload层数,让模型在GPU上运行推理。未使用-ngl N--n-gpu-layers N参数,程序默认在CPU上运行

./llama-server -m /mnt/workspace/my-llama-13b-q4_0.gguf -ngl 28

可从以下关键启动日志看出,模型在GPU上执行

ggml_cuda_init: GGML_CUDA_FORCE_MMQ:   no
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
ggml_cuda_init: found 1 CUDA devices:Device 0: Tesla V100S-PCIE-32GB, compute capability 7.0, VMM: yes
llm_load_tensors: ggml ctx size =    0.30 MiB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors:        CPU buffer size =  1002.00 MiB
llm_load_tensors:      CUDA0 buffer size = 14315.02 MiB
.........................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: n_batch    = 512
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 0

会启动一个类似web服务器的进程,默认端口号为8080,这样就启动了一个 API 服务,可以使用 curl 命令进行测试。

curl --request POST \--url http://localhost:8080/completion \--header "Content-Type: application/json" \--data '{"prompt": "What color is the sun?","n_predict": 512}'{"content":".....","generation_settings":{"frequency_penalty":0.0,"grammar":"","ignore_eos":false,"logit_bias":[],"mirostat":0,"mirostat_eta":0.10000000149011612,"mirostat_tau":5.0,......}}

此外可通过web页面或者OpenAI api等进行访问。安装openai依赖

pip install openai

使用OpenAI api访问:

import openaiclient = openai.OpenAI(base_url="http://127.0.0.1:8080/v1",api_key = "sk-no-key-required"
)completion = client.chat.completions.create(model="qwen", # model name can be chosen arbitrarilymessages=[{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "tell me something about michael jordan"}]
)
print(completion.choices[0].message.content)

3.3模型API服务(第三方,自己安装不需要)

在llamm.cpp项目中有提到各种语言编写的第三方工具包,可以使用这些工具包提供API服务,这里以Python为例,使用llama-cpp-python提供API服务。

安装依赖

pip install llama-cpp-python
pip install llama-cpp-python -i https://mirrors.aliyun.com/pypi/simple/

注意:可能还需要安装以下缺失依赖,可根据启动时的异常提示分别安装。

pip install sse_starlette starlette_context pydantic_settings

启动API服务,默认运行在http://localhost:8000

python -m llama_cpp.server --model models/Llama3-q8.gguf

然后操作和上面一致,运行openai的脚本

4. 实现类似 ChatGPT 的聊天应用

至此,我们已经可以熟练地在本地部署和运行 Llama 模型了,为了让我们和语言模型之间的交互更加友好,我们还可以借助一些开源项目打造一款类似 ChatGPT 的聊天应用。无论是 llama.cpp 还是 Ollama,周边生态都非常丰富,社区开源了大量的网页、桌面、终端等交互界面以及诸多的插件和拓展,参考 Ollama 的 Community Integrations。

下面列举一些比较有名的 Web UI:

  • Open WebUI
  • Text generation web UI
  • Jan
  • GPT4All
  • LibreChat

接下来我们就基于 Open WebUI 来实现一个本地聊天应用。Open WebUI 是一个可扩展、功能丰富且用户友好的自托管 WebUI,旨在完全离线运行。它的原名叫 Ollama WebUI,原本只是对 Ollama 的,后来在社区的推动下,发展成了一款通用的聊天应用 WebUI,支持各种 LLM 运行器,包括 Ollama 以及与 OpenAI 兼容的接口。

Open WebUI 具备大量的功能特性,包括:

  • 直观的界面:接近 ChatGPT 的界面,提供用户友好的体验;
  • 响应式的设计:同时兼容桌面和移动端设备;
  • 快速的响应:让用户享受快速且响应迅速的性能;
  • 轻松的安装:支持使用 Docker 或 Kubernetes 进行安装;
  • 代码语法高亮:增强代码的可读性;
  • 全面支持 Markdown 和 LaTeX:实现更丰富的交互,提升用户的体验;
  • 本地 RAG 集成:支持在聊天中对文档进行问答;
  • 网页浏览功能:支持在聊天中对网页进行问答;
  • 预设的提示词:聊天时输入 / 命令即可立即访问预设的提示词;
  • RLHF 注释:通过给消息点赞或点踩,为 RLHF 创建数据集,便于使用您的消息来训练或微调模型;
  • 对话标记:轻松分类和定位特定的聊天,以便快速参考和高效数据收集;
  • 模型管理:支持在页面上下载或删除模型;支持导入 GGUF 文件,轻松创建 Ollama 模型或 Modelfile 文件;
  • 多模型切换:支持多个模型之间的切换;
  • 多模型对话:同时与多个模型进行交流,通过比较获得最佳回应;
  • 多模态:支持多模态大模型,可以在聊天中使用图片;
  • 聊天记录:轻松访问和管理对话历史,支持导入和导出聊天数据;
  • 语音输入支持:通过语音互动与模型进行交流,享受直接与模型对话的便利;
  • 图像生成集成:无缝地使用 AUTOMATIC1111 API 和 DALL-E 集成图像生成功能,为聊天体验增添动态视觉内容;
  • OpenAI API 集成:轻松地将与 Ollama 模型兼容的 OpenAI API 集成到对话中;
  • 国际化(i18n):支持多种不同的语言;

运行如下的 Docker 命令即可安装 Open WebUI:

$ docker run -d -p 3000:8080 \--add-host=host.docker.internal:host-gateway \-v open-webui:/app/backend/data \--name open-webui \--restart always \ghcr.io/open-webui/open-webui:main

安装成功后,浏览器访问 http://localhost:3000/ 即可,首次访问需要注册一个账号:

在这里插入图片描述

注册账号并登录后,就可以看到我们熟悉的聊天界面了:

在这里插入图片描述

5. 参考链接

https://blog.csdn.net/god_zzZ/article/details/130328307

https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki/llama.cpp%E9%87%8F%E5%8C%96%E9%83%A8%E7%BD%B2

https://www.chenshaowen.com/blog/llama-cpp-that-is-a-llm-deployment-tool.html

https://blog.csdn.net/m0_61797126/article/details/140583788

https://www.bilibili.com/read/cv34175051/

https://qwen.readthedocs.io/zh-cn/latest/run_locally/llama.cpp.html

https://blog.csdn.net/qq_38628046/article/details/139006498

https://www.aneasystone.com/archives/2024/04/llama-in-action.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/60074.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于 Python flask 的微博舆论情感分析,微博大数据可视化系统

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…

【编码】【特征选择】【降维】

简要介绍 编码(Encoding) 编码是将原始数据转换为模型能够理解和处理的格式的过程。常见的编码方法包括: 标签编码(Label Encoding): 适用于类别较少的分类数据。将每个类别映射到一个唯一的整数。独热编…

大数据之多级缓存方案

多级缓存介绍?多级缓存优缺点,应用场景?多级缓存架构? 多级缓存介绍 多级缓存方案是一种优化手段,通过在多个级别上存储数据来提高应用程序的性能和响应速度。以下是对多级缓存方案的详细解析: 一、多级缓…

HBuilderX运行微信小程序,编译的文件在哪,怎么运行

1. 点击HBuilderX顶部的运行-运行到小程序模拟器-微信开发者工具,就会开始编译 2. 编译完成后的文件在根目录找到 unpackage -- dist -- dev -- mp-weixin, 这里面就是编译后的文件,如果未跳转到开发者工具,那可能是没设置启动路径&#xff0…

Git超详细笔记包含IDEA整合操作

git超详细笔记 文章目录 git超详细笔记第1章Git概述1.1、何为版本控制1.2、为什么需要版本控制1.3、版本控制工具1.4 、Git简史1.5、Git工作机制1.6 、Git和代码托管中心 第2章Git安装第3章Git常用命令3.1、设置用户签名3.2、初始化本地库本地库(Local Repository&a…

人工智能理论之opencv图像预处理、数据库、GUI布局的综合应用(图像预处理版块)

文章目录 前言图像预处理卷积核概念图像平滑处理高斯滤波 双边滤波中值滤波Canny边缘检测图像形态学操作形态学梯度顶帽小结 图片预处理1.引入库 图像预处理错误尝试成功运行 总结 前言 对前面学习综合应用的总结,不单是一个版块,而是三个版块综合到一起…

Nginx(编译)+Lua脚本+Redis 实现自动封禁访问频率过高IP

1.安装lua 1.1安装LuaJIT yum install readline-devel mkdir -p lua-file cd lua-file/ wget https://github.com/LuaJIT/LuaJIT/archive/refs/tags/v2.0.5.tar.gz tar -zxvf LuaJIT-2.0.5.tar.gz cd LuaJIT-2.0.5 make && make install PREFIX/usr/local/luajit 1.2…

【python程序】恢复曾经删除的QQ说说

是否还能想起曾经的QQ说说,是否还想知道自己以前删除了什么 今天就给大家介绍下这个可以恢复以前删除的QQ说说的 小工具 这个工具是由python编写的,也已经打包好了小程序,一键运行 具体下载地址:https://pan.quark.cn/s/b3f41e3…

【统计子矩阵——部分前缀和+双指针】

题目 代码 #include <bits/stdc.h> using namespace std; typedef long long ll; const int N 510; int s[N][N]; int main() {ios::sync_with_stdio(0);cin.tie(0);int n, m, k;cin >> n >> m >> k;for(int i 1; i < n; i)for(int j 1; j <…

Java版——设计模式笔记

Java版——设计模式笔记 设计模式的分类 创建型模式&#xff08;Creational&#xff09;&#xff1a;关注对象的实例化过程&#xff0c;包括了如何实例化对象、隐藏对象的创建细节等。常见的创建型模式有单例模式、工厂模式、抽象工厂模式等。结构型模式&#xff08;Structur…

多语言电商系统的多语言设计机制

在全球化电商市场中&#xff0c;跨语言沟通是提升用户体验和扩大市场份额的关键。为了满足不同语言用户的需求&#xff0c;构建一个支持多语言的电商系统已成为企业扩展国际市场的重要步骤。多语言电商系统需要能够根据用户的语言偏好自动显示内容&#xff0c;同时保证翻译的准…

【Steam登录】protobuf协议逆向 | 续

登录接口&#xff1a; ‘https://api.steampowered.com/IAuthenticationService/BeginAuthSessionViaCredentials/v1’ 精准定位&#xff0c;打上条件断点 this.CreateWebAPIURL(t) ‘https://api.steampowered.com/IAuthenticationService/BeginAuthSessionViaCredentials/v1…

Python | Leetcode Python题解之第556题下一个更大元素III

题目&#xff1a; 题解&#xff1a; class Solution:def nextGreaterElement(self, n: int) -> int:x, cnt n, 1while x > 10 and x // 10 % 10 > x % 10:cnt 1x // 10x // 10if x 0:return -1targetDigit x % 10x2, cnt2 n, 0while x2 % 10 < targetDigit:c…

Python——数列1/2,2/3,3/4,···,n/(n+1)···的一般项为Xn=n/(n+1),当n—>∞时,判断数列{Xn}是否收敛

没注释的源代码 from sympy import * n symbols(n) s n/(n1) print(数列的极限为&#xff1a;,limit(s,n,oo))

Java基础——类和对象的定义链表的创建,输出

目录 什么是类&#xff1f; 什么是对象? 如何创建链表&#xff1f; 尾插法&#xff1a; 头插法&#xff1a; 输出链表的长度 输出链表的值 什么是类&#xff1f; 创建Java程序必须创建一个类class. .java程序需要经过javac指令将文件翻译为.class字节码文件&#xff0c…

python代码打包exe文件(可执行文件)

一、exe打包 1、构建虚拟环境 conda create -n env_name python3.8 #env_name,python根据自己需求修改2、保存和安装项目所需的所有库 pip freeze > requirements.txt3、虚拟环境安装项目包、库 pip install -r requirements.txt4、安装pyinstaller pip install pyinst…

【Linux】冯诺依曼体系结构

目录 一、冯诺依曼体系结构二、冯诺依曼体系结构的基本组成三、关于冯诺依曼体系结构的一些问题结尾 一、冯诺依曼体系结构 冯诺依曼体系结构&#xff0c;也称为普林斯顿结构&#xff0c;是现代计算机设计的基础框架。这一体系结构由数学家冯诺依曼在20世纪40年代提出&#xf…

图像信号处理器(ISP,Image Signal Processor)详解

简介&#xff1a;个人学习分享&#xff0c;如有错误&#xff0c;欢迎批评指正。 图像信号处理器&#xff08;ISP&#xff0c;Image Signal Processor&#xff09; 是专门用于处理图像信号的硬件或处理单元&#xff0c;广泛应用于图像传感器&#xff08;如 CMOS 或 CCD 传感器&a…

英飞凌Aurix2G TC3XX GPT12模块详解

英飞凌Aurix2G TC3XX GPT12模块详解 本文主要介绍英飞凌 Aurix2G TC3XX系列芯片GPT12模块硬件原理、MCAL相关配置和部分代码实现。 文章目录 英飞凌Aurix2G TC3XX GPT12模块详解1 模块介绍2 功能介绍2.1 结构2.2 独立运行模式2.2.1 定时器模式2.2.2 门控定时器模式2.2.3 计数…

Python小白学习教程从入门到入坑------第二十九课 访问模式(语法进阶)

目录 一、访问模式 1.1 r 1.2 w 1.3 1.3.1 r 1.3.2 w 1.3.3 a 1.4 a 一、访问模式 模式可做操作若文件不存在是否覆盖r只能读报错-r可读可写报错是w只能写创建是w可读可写创建是a只能写创建否&#xff0c;追加写a可读可写创建否&#xff0c;追加写 1.1 r r&…