PyTorch的基础教程

以下是PyTorch的基础教程,包括安装步骤以及一个简单的入门Demo。

一、PyTorch安装

  1. 安装Anaconda

    • Anaconda是一个流行的Python发行版,包含了大量的科学计算库。
    • 访问Anaconda官网,选择适合操作系统的版本进行下载和安装。
    • 在安装过程中,选择“Add Anaconda to PATH”选项,以便在命令行中直接使用Anaconda。
  2. 创建虚拟环境

    • 虚拟环境可以帮助隔离不同项目的依赖项,避免不同项目之间的冲突。
    • 打开Anaconda Prompt,输入以下命令创建虚拟环境:conda create --name pytorch_env python=3.8(这里的“pytorch_env”是虚拟环境的名称,可以根据需要进行更改;Python版本也可以根据系统中的版本进行更改)。
    • 创建完成后,激活虚拟环境:conda activate pytorch_env
  3. 修改Anaconda下载源

    • 为了加速下载,可以将Anaconda的下载源修改为国内的镜像源,如清华源。
    • 在Anaconda Prompt中输入以下命令创建.condarc文件:conda config --set show_channel_urls yes
    • 然后,在生成的.condarc文件中,将内容替换为清华源的地址。
  4. 安装PyTorch

    • 访问PyTorch官网,找到适合系统的安装包进行下载。
    • 根据系统配置(如CUDA版本)选择合适的PyTorch版本。
    • 在PyTorch官网的“Get Started”页面,选择相应的选项(如操作系统、包管理器、Python版本、CUDA版本等),然后复制生成的安装命令。
    • 在Anaconda Prompt中运行该命令以安装PyTorch。
  5. 验证安装

    • 在命令行中输入以下命令以验证PyTorch是否成功安装:python -c "import torch; print(torch.__version__)"
    • 如果成功安装了PyTorch,将输出PyTorch的版本号。

二、PyTorch入门Demo

以下是一个简单的PyTorch入门Demo,展示了如何使用PyTorch创建一个神经网络并进行前向传播。

import torch
import torch.nn as nn
import torch.optim as optim# 定义一个简单的神经网络
class SimpleNet(nn.Module):def __init__(self):super(SimpleNet, self).__init__()self.fc1 = nn.Linear(784, 256)  # 输入层到隐藏层self.fc2 = nn.Linear(256, 10)   # 隐藏层到输出层def forward(self, x):x = torch.relu(self.fc1(x))    # 激活函数x = self.fc2(x)               # 输出层return x# 实例化网络
net = SimpleNet()# 定义一个损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01)# 生成一些随机数据作为输入和标签
inputs = torch.randn(64, 784)  # 64个样本,每个样本784个特征(例如,28x28的图像展平)
labels = torch.randint(0, 10, (64,))  # 64个标签,取值范围在0到9之间# 前向传播
outputs = net(inputs)
loss = criterion(outputs, labels)# 反向传播和优化
optimizer.zero_grad()  # 清零梯度
loss.backward()        # 反向传播计算梯度
optimizer.step()       # 更新参数print("Loss:", loss.item())

在这个Demo中,我们定义了一个简单的全连接神经网络SimpleNet,它包含一个输入层到隐藏层的全连接层和一个隐藏层到输出层的全连接层。然后,我们实例化网络,并定义了一个交叉熵损失函数和一个随机梯度下降优化器。接着,我们生成了一些随机数据作为输入和标签,进行了前向传播计算损失,并进行了反向传播和优化。最后,我们打印了损失值。

请注意,这只是一个非常简单的入门Demo,实际应用中可能需要更复杂的网络结构和更多的数据处理步骤。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/58382.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分布式 ID 生成策略(二)

在上一篇文章,分布式 ID 生成策略(一),我们讨论了基于数据库的 ID 池策略,今天来看另一种实现,基于雪花算法的分布式 ID 生成策略。 如图所示,我们用 41 位时间戳 12 位机器 ID 10 位序列号&a…

解决edge浏览器无法同步问题

有时候电脑没带,但是浏览器没有同步很烦恼。chrome浏览器的同步很及时在多设备之间能很好使用。但是edge浏览器同步没反应。 在这里插入图片描述 解决方法: 一、进入edge浏览器点击图像会显示未同步。点击“管理个人资料”,进入后点击同步&…

【机器学习】14. 集成学习 ensemble: bagging, boosting, 随机森林 random forest

集成学习 ensemble: bagging, boosting, 随机森林 random forest 1. Ensemble 整体认知2. 使用Ensemble的原因3. 构建Ensemble 的方法4. Bagging(bootstrap aggregation)特点 5. BoostingAdaBoost整体算法思路 6. 比较7. 随机森林 1. Ensemble 整体认知 …

记录一次更新idea

一、官网下载安装包&#xff0c;拿所需版本 二、链接下载&#xff0c; 逐行仔细读readme.txt 三、执行script(unstall<->install)vbs、-javaagent:更改时记得

Vue背景图片自适应大屏与小屏

1&#xff0c;父绝子相 效果是台式看的更多&#xff0c;笔记本看部分。但是图片不会变形 <div class"father" style"width:100%; position:relative"> <img src"test.png" class"son" style"width:1920px; position:a…

低代码平台如何通过AI赋能,实现更智能的业务自动化?

引言 随着数字化转型的加速推进&#xff0c;企业在日常运营中面临的业务复杂性与日俱增。如何快速响应市场需求&#xff0c;优化流程&#xff0c;并降低开发成本&#xff0c;成为各行业共同关注的核心问题。低代码平台作为一种能够快速构建应用程序的工具&#xff0c;因其可视化…

实现企业微信打卡月报与简道云的高效集成

实现企业微信打卡月报与简道云的高效集成 企业微信打卡月报同步到简道云 在企业管理中&#xff0c;员工的考勤数据是至关重要的一环。为了实现高效的数据管理和分析&#xff0c;我们需要将企业微信的打卡月报数据集成到简道云平台。本文将分享一个具体的技术案例&#xff0c;展…

【Redis】常见基本全局命令

一、Redis俩大核心命令 由于Redis是以键值对的形式进行数据存取&#xff0c;自然就离不开不断的存储和获取&#xff0c;而其所对应的命令则是set和get&#xff0c;如此说来二者为Redis的核心基础命令也不为过。 作用&#xff1a;用于存储Stirng类型的数据 返回&#xff1a;当…

GPT避坑指南:如何辨别逆向、AZ、OpenAI官转

市面上有些说自己是官转&#xff0c;一刀只需要1块甚至几毛钱&#xff0c;并声称官方倍率的&#xff0c;很大可能就是使用的是 逆向或Azure。 如何鉴别逆向 逆向的种类很多&#xff0c;主要分为3类 逆向不知名A| 镜像站或偷的 key。成本约等于0&#xff0c;调用聊天数据可能在…

第十一章 Shiro会话管理和加密

学习目标 11.1 会话管理11.1.1 会话相关API一、获取会话二、会话属性管理三、会话信息获取四、会话控制五、会话监听六、会话DAO七、会话验证 11.2 缓存一、缓存接口二、内置缓存实现三、配置缓存四、使用缓存五、缓存清理六、注意事项 前面两章我们已经掌握了Shiro四大基石的认…

frida脚本,自动化寻址JNI方法

版权归作者所有&#xff0c;如有转发&#xff0c;请注明文章出处&#xff1a;https://cyrus-studio.github.io/blog/ 1. 通过 ArtMethod 结构体找到 jni 方法在内存中的地址&#xff0c;并把寻址方法通过 rpc.exports 暴露给 Python 脚本调用 jni_addr.js let entry_point_fr…

【PnP】详细公式推导,使用DLT直接线性变换法求解相机外参

文章目录 &#x1f680;PnP1️⃣ 求解不考虑尺度的解2️⃣ 恢复解的尺度3️⃣ 另一种解法 &#x1f680;PnP PnP(Perspective-n-Point)是求解3D到2D点相机外参的算法。PnP算法有DLT直接线性变换、P3P三对点估计位姿、EPnP(Efficient PnP)、BA(Bundle Adjustment)光速法平差。这…

数据库基础介绍

前言&#xff1a; 在当今信息化、数字化的时代&#xff0c;数据库是支撑一切信息系统的核心基础设施。无论是金融机构的账户管理、电商平台的商品库存&#xff0c;还是社交媒体的用户信息&#xff0c;数据库都在背后扮演着关键角色数据库不仅用于存储和管理数据&#xff0c;更…

[Ansible实践笔记]自动化运维工具Ansible(一):初探ansibleansible的点对点模式

文章目录 Ansible介绍核心组件任务执行方式 实验前的准备更新拓展安装包仓库在ansible主机上配置ip与主机名的对应关系生成密钥对将公钥发送到被管理端&#xff0c;实现免密登录测试一下是否实现免密登录 常用工具ansibleansible—docansible—playbook 主要配置文件 Ansible 模…

倪师学习笔记-天纪-易经八卦

一、简介 卦代表事情&#xff0c;爻代表时机&#xff0c;三爻为一卦八卦对应的天相&#xff0c;六十四卦对应人间事 二、八卦性 1、乾 天父亲向下看&#xff0c;无所求&#xff0c;雄心万丈始终如一&#xff0c;贞&#xff0c;坚心&#xff0c;专心至刚&#xff0c;天威&am…

Hash表算法

哈希表 理论知识&#xff08;本文来自于代码随想录摘抄&#xff09;什么是哈希常见的三种哈希结数组&#xff1a;set:map:其他常用方法或者技巧&#xff08;自己总结的&#xff09; 练习题和讲解有效的字母移位词349. 两个数组的交集1. 两数之和454. 四数相加 II15. 三数之和 总…

如何选择适合自己的 Python IDE

集成开发环境&#xff08;IDE&#xff09;是指提供广泛软件开发能力的软件应用程序。IDE 通常包括源代码编辑器、构建自动化工具和调试器。大多数现代 IDE 都配备了智能代码补全功能。在本文中&#xff0c;你将发现目前市场上最好的 Python IDE。 什么是 IDE&#xff1f; IDE…

为什么架构设计禁止IP直连?

什么是IP直连&#xff1f; IP直连指应用程序直接在代码中硬编码IP地址&#xff0c;比如&#xff0c;连接mysql数据库的数据库链接&#xff0c;如下的定义方式&#xff0c;就属于IP直连。 这种写法在开发环境中很常见&#xff0c;但是&#xff0c;在正式生产环境中&#xff0c;…

Linux shell编程学习笔记87:blkid命令——获取块设备信息

0 引言 在进行系统安全检测时&#xff0c;我们需要收集块设备的信息&#xff0c;这些可以通过blkid命令来获取。 1 blkid命令的安装 blkid命令是基于libblkid库的命令行工具&#xff0c;可以在大多数Linux发行版中使用。 如果你的Linux系统中没有安装blkid命令&#xff0c;…

Nginx处理并发连接

Nginx以其高效处理并发连接的能力而闻名&#xff0c;这主要归功于其事件驱动的架构和异步非阻塞I/O操作。 是Nginx处理并发连接的关键机制&#xff1a; 1. 事件驱动架构 Nginx采用事件驱动架构&#xff0c;这意味着它使用事件通知机制来响应网络事件&#xff0c;如新连接、读…