欺诈文本分类检测(十四):GPTQ量化模型

1. 引言

量化的本质:通过将模型参数从高精度(例如32位)降低到低精度(例如8位),来缩小模型体积。

本文将采用一种训练后量化方法GPTQ,对前文已经训练并合并过的模型文件进行量化,通过比较模型量化前后的评测指标,来测试量化对模型性能的影响。

GPTQ的核心思想在于:将所有权重压缩到8位或4位量化中,通过最小化与原始权重的均方误差来实现。在推理过程中,它将动态地将权重解量化为float16,以提高性能,同时保持较低的内存占用率。

注:均方误差是评估两个数值数据集之间差异的一种常用方法,它通过计算量化后权重与原始权重之间的均方误差,并使之最小化,来减少量化过程中引入的误差,以保持模型在推理时的性能。

2. 量化过程

2.1 加载量化模型

首先引入必要的包,其中:

  • auto_gptq: 一个用于模型量化的库,通常用于减少模型的内存占用和计算消耗。
  • AutoGPTQForCausalLM: 用于加载和使用经过量化的因果语言模型。
  • BaseQuantizeConfig: 定义量化模型时所需的参数,例如量化精度。
  • AutoTokenizer:transformers库提供的分词器,用于处理文本分词。
import os
import json
import torch
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from transformers import AutoTokenizer

定义量化任务要使用的设备,并指定模型的原始路径model_path

os.environ["CUDA_VISIBLE_DEVICES"] = "1"
device = 'cuda'
model_path = "/data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud_1__0"

配置量化参数。

quantize_config = BaseQuantizeConfig(bits=8, group_size=128,   # 分组量化damp_percent=0.01,desc_act=False,  static_groups=False,sym=True,true_sequential=True,model_name_or_path=None,model_file_base_name="model"
)

参数释义如下:

  • bits: 指定量化的位数为8位。
  • group_size:量化时的分组大小,分组量化可以提高计算效率,通常设置为 128 是一个合理的选择,适合大多数模型。
  • damp_percent:控制量化过程中对权重的平滑处理,防止过度量化导致的性能下降。默认值 0.01 通常是一个良好的起点,如果量化不佳,可以增加此值。
  • desc_act:控制是否使用描述性激活,设置为 False 可以加速推理,如果模型的精度更重要,可以设置为 True。
  • static_groups: 是否使用静态分组。静态分组可以提高推理效率, 如果模型结构固定且不需要动态调整,可以设置为 True。否则,保持为 False 以支持动态分组。
  • sym: 指定是否使用对称量化。对称量化可以简化计算,如果模型对称性较好,可以设置为 True。
  • true_sequential: 控制是否使用真实的顺序量化。真实顺序量化可以提高模型的表现,但可能会增加计算复杂性。如果模型对顺序敏感,可以设置为 True。
  • model_file_base_name:指定生成的量化模型文件名称,最终体现在输出文件的命名上。

加载分词器,并根据配置quantize_config指定的量化位数来加载模型。

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoGPTQForCausalLM.from_pretrained(model_path, quantize_config)
2.2 准备校准数据集

GPTQ采用权重分组量化(如上面的配置中128列为一组),一个分组内的参数采用逐个进行量化(如下图所示),在每个参数被量化后,需要适当调整这个 block 内其他未量化的参数,以弥补量化造成的精度损失。

在这里插入图片描述

因此,GPTQ 量化需要准备校准数据集,我们这里采用一个以前生成的测试数据集作为校准数据。

def load_jsonl(path):conversations = []with open(path, 'r') as file:data = [json.loads(line) for line in file]conversations = [dialog['messages'] for dialog in data]return conversationseval_data_path = '/data2/anti_fraud/dataset/test_chatml_0815.jsonl'
conversations = load_jsonl(eval_data_path)
conversations[0]

校验数据集的数据格式是一个标准的聊天模板,示例如下:

[{'role': 'system', 'content': 'You are a helpful assistant.'},{'role': 'user','content': '\n下面是一段对话文本, 请分析对话内容是否有诈骗风险,以json格式输出你的判断结果(is_fraud: true/false)。\n\n\n发言人3: 那就是说看上半年我们的三四月份会不会有一些这个相关的一些这个缓解,就是说这方面的一些矛盾的一些缓解,债务的一个情况的一些缓解,那我们还要继续观察。\n发言人2: 好的,蒋总,那我们看一下那个其他投资者有没有什么其他问题。\n发言人1: 大家好,通过网络端接入的投资者可点击举手连麦等候提问,或在文字交流区提交您的问题,通过电话端接入的投资者请按星一键提问。先按星号键,再按一键,谢谢。大家好,通过网络端接入的投资者可点击举手连麦,然后提问,或在文字交流区提交您的问题。通过电话端接入的投资者请按星一键提问。\n发言人1: 先按星号键,再按数字一键,谢谢。'},{'role': 'assistant', 'content': '{"is_fraud": false}'}]

定义一个预处理函数,将文本数据预处理为张量数据。

def preprocess(dataset, max_len=1024):data = []for msg in dataset:text = tokenizer.apply_chat_template(msg, tokenize=False, add_generation_prompt=False)model_inputs = tokenizer([text])input_ids = torch.tensor(model_inputs.input_ids[:max_len], dtype=torch.int)data.append(dict(input_ids=input_ids, attention_mask=input_ids.ne(tokenizer.pad_token_id)))return datadataset = preprocess(conversations)
  • tokenizer.apply_chat_template:负责将消息格式转化为Qwen模型需要的提示词格式。
  • tokenizer([text]):使用tokenizer对文本进行分词,并将token转换为ID值。
  • torch.tensor:将token_id转换为tensor张量。

配置日志显示格式:

import logginglogging.basicConfig(format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
)
2.3 开始量化

使用校准数据集来动态调整量化参数,使模型在量化时学习并适应数据分布。

%%time
model.quantize(dataset, cache_examples_on_gpu=False)
INFO - Start quantizing layer 1/28
INFO - Quantizing self_attn.k_proj in layer 1/28...
INFO - Quantizing self_attn.v_proj in layer 1/28...
INFO - Quantizing self_attn.q_proj in layer 1/28...
INFO - Quantizing self_attn.o_proj in layer 1/28...
INFO - Quantizing mlp.up_proj in layer 1/28...
INFO - Quantizing mlp.gate_proj in layer 1/28...
INFO - Quantizing mlp.down_proj in layer 1/28...
INFO - Start quantizing layer 2/28
……
INFO - Start quantizing layer 28/28
INFO - Quantizing self_attn.k_proj in layer 28/28...
INFO - Quantizing self_attn.v_proj in layer 28/28...
INFO - Quantizing self_attn.q_proj in layer 28/28...
INFO - Quantizing self_attn.o_proj in layer 28/28...
INFO - Quantizing mlp.up_proj in layer 28/28...
INFO - Quantizing mlp.gate_proj in layer 28/28...
INFO - Quantizing mlp.down_proj in layer 28/28...CPU times: user 30min 52s, sys: 3min 40s, total: 34min 32s
Wall time: 27min 23s

由于内容太长,中间作了省略,不过仍然可以看出,量化是一层一层逐个对每个矩阵分别进行量化的,一个1.5B的模型量化过程耗时达27分钟。

保存量化后的模型和分词器状态。

  • quant_path指定了量化模型的保存路径
  • use_safetensors=True 参数表示使用安全张量格式(SafeTensors)进行保存,具有更好的安全性和性能。
  • tokenizer.save_pretrained为量化后的模型保存一份分词器配置。
quant_path = "/data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int8"
model.save_quantized(quant_path, use_safetensors=True)
tokenizer.save_pretrained(quant_path)

输出保存的分词器配置。

    ('/data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int8/tokenizer_config.json','/data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int8/special_tokens_map.json','/data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int8/vocab.json','/data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int8/merges.txt','/data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int8/added_tokens.json','/data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int8/tokenizer.json')
2.4 4位量化

上面是采用8位量化,作为对比,我们也量化一个4位模型,与8位量化的区别只在于量化配置时的参数bits改成了4,其它都不作改变.

quantize_config_int4 = BaseQuantizeConfig(bits=4,           # 4位量化group_size=128,   # 分组量化damp_percent=0.01,desc_act=False,  static_groups=False,sym=True,true_sequential=True,model_name_or_path=None,model_file_base_name="model"
)

采用4位量化配置来加载模型。

model_int4 = AutoGPTQForCausalLM.from_pretrained(model_path, quantize_config_int4)

对4位参数进行量化校验,校准数据集复用前面8位量化时生成的数据。

%%time
model_int4.quantize(dataset, cache_examples_on_gpu=False)
INFO - Start quantizing layer 1/28
INFO - Quantizing self_attn.k_proj in layer 1/28...
INFO - Quantizing self_attn.v_proj in layer 1/28...
INFO - Quantizing self_attn.q_proj in layer 1/28...
INFO - Quantizing self_attn.o_proj in layer 1/28...
INFO - Quantizing mlp.up_proj in layer 1/28...
INFO - Quantizing mlp.gate_proj in layer 1/28...
INFO - Quantizing mlp.down_proj in layer 1/28...
INFO - Start quantizing layer 2/28
……
INFO - Start quantizing layer 28/28
INFO - Quantizing self_attn.k_proj in layer 28/28...
INFO - Quantizing self_attn.v_proj in layer 28/28...
INFO - Quantizing self_attn.q_proj in layer 28/28...
INFO - Quantizing self_attn.o_proj in layer 28/28...
INFO - Quantizing mlp.up_proj in layer 28/28...
INFO - Quantizing mlp.gate_proj in layer 28/28...
INFO - Quantizing mlp.down_proj in layer 28/28...CPU times: user 37min 11s, sys: 3min 2s, total: 40min 13s
Wall time: 31min 56s

保存量化后的模型和分词器配置。

quant_int4_path = "/data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int4"
model_int4.save_quantized(quant_int4_path, use_safetensors=True)
tokenizer.save_pretrained(quant_int4_path)
('/data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int4/tokenizer_config.json','/data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int4/special_tokens_map.json','/data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int4/vocab.json','/data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int4/merges.txt','/data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int4/added_tokens.json','/data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int4/tokenizer.json')

3. 评测

与前文不同,这里统一采用测试数据集进行评测,以评估模型的最终性能。

原始模型评测(16位)
%run evaluate.py
testdata_path = '/data2/anti_fraud/dataset/test0819.jsonl'
evaluate(model_path, '', testdata_path, device, batch=True, debug=True)
progress: 100%|██████████| 2349/2349 [01:52<00:00, 20.87it/s]tn:1136, fp:31, fn:162, tp:1020
precision: 0.9705042816365367, recall: 0.8629441624365483

这时的召回率recall0.8629和前文的测评结果0.9129有差异,前文用的验证集,这里用的是测试集,可能是这两个数据集的数据分布不均匀,导致两者结果有较大差异。

量化8位模型评测
%run evaluate.py
testdata_path = '/data2/anti_fraud/dataset/test0819.jsonl'
model_int8_path = '/data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int8'
evaluate(model_gptq_path, '', testdata_path, device, batch=True, debug=True)
tn:1134, fp:33, fn:158, tp:1024
precision: 0.9687795648060549, recall: 0.8663282571912013

8位量化模型的评测结果与原始模型基本一致,说明8位量化依然保持了原始模型的推理表现。

量化4位模型评测
%run evaluate.py
testdata_path = '/data2/anti_fraud/dataset/test0819.jsonl'
model_int4_path = '/data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int4'
tokenizer = AutoTokenizer.from_pretrained(model_int4_path)
model_int4_reload = AutoModelForCausalLM.from_pretrained(model_int4_path, device_map=device)
evaluate_with_model(model_int4_reload, tokenizer, testdata_path, device, batch=True, debug=True)

注:4位量化模型这里之所以要单独加载model,是因为GPTQ量化的4位模型有个限制——只能在GPU上运行,我们原先的加载方式会报错,详情可以参看本文最后的附:4位量化模型加载错误

tn:1081, fp:86, fn:50, tp:1132
precision: 0.9293924466338259, recall: 0.9576988155668359

从这个结果来看,4位量化模型与原始模型的性能差别较大,具体体现在:

  1. 精确率下降明显,表明模型在检测欺诈文本时,误报(false positives)数量增加,模型可能会将更多的非欺诈文本错误地分类为欺诈文本。
  2. 召回率上升,模型在检测欺诈时漏报(false negatives)的数量减少,这意味着模型在检测欺诈文本时更加激进,尽可能减少漏报,哪怕误报增加。

4位量化比8位量化引入更多的信息丢失和噪声,模型权重和激活值的精度显著下降,最终导致分类效果的明显差异。

4. 模型文件差异

原始模型文件列表信息:

!ls -l /data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud_1__0
    total 3026376-rw-rw-r-- 1 xiaoguanghua xiaoguanghua         80 Aug 29 11:30 added_tokens.json-rw-rw-r-- 1 xiaoguanghua xiaoguanghua        748 Aug 29 11:30 config.json-rw-rw-r-- 1 xiaoguanghua xiaoguanghua        242 Aug 29 11:30 generation_config.json-rw-rw-r-- 1 xiaoguanghua xiaoguanghua    1671853 Aug 29 11:30 merges.txt-rw-rw-r-- 1 xiaoguanghua xiaoguanghua 1975314632 Aug 29 11:30 model-00001-of-00002.safetensors-rw-rw-r-- 1 xiaoguanghua xiaoguanghua 1112152304 Aug 29 11:30 model-00002-of-00002.safetensors-rw-rw-r-- 1 xiaoguanghua xiaoguanghua      27693 Aug 29 11:30 model.safetensors.index.json-rw-rw-r-- 1 xiaoguanghua xiaoguanghua        367 Aug 29 11:30 special_tokens_map.json-rw-rw-r-- 1 xiaoguanghua xiaoguanghua       1532 Aug 29 11:30 tokenizer_config.json-rw-rw-r-- 1 xiaoguanghua xiaoguanghua    7028043 Aug 29 11:30 tokenizer.json-rw-rw-r-- 1 xiaoguanghua xiaoguanghua    2776833 Aug 29 11:30 vocab.json

8位量化模型的文件列表信息:

!ls -l /data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int8
total 2235860
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua         80 Sep 10 11:53 added_tokens.json
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua       1062 Sep 10 11:53 config.json
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua    1671853 Sep 10 11:53 merges.txt
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua 2278014312 Sep 10 11:53 model.safetensors
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua        269 Sep 10 11:53 quantize_config.json
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua        367 Sep 10 11:53 special_tokens_map.json
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua       1532 Sep 10 11:53 tokenizer_config.json
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua    7028043 Sep 10 11:53 tokenizer.json
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua    2776833 Sep 10 11:53 vocab.json

4位量化模型的文件列表信息:

!ls -l /data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int4
total 1591120
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua         80 Sep 10 12:50 added_tokens.json
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua       1088 Sep 10 18:12 config.json
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua    1671853 Sep 10 12:50 merges.txt
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua 1617798120 Sep 10 12:50 model.safetensors
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua        269 Sep 10 12:50 quantize_config.json
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua        367 Sep 10 12:50 special_tokens_map.json
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua       1532 Sep 10 12:50 tokenizer_config.json
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua    7028043 Sep 10 12:50 tokenizer.json
-rw-rw-r-- 1 xiaoguanghua xiaoguanghua    2776833 Sep 10 12:50 vocab.json

可以看到,原始模型、8位量化、4位量化三者的模型文件大小分别3.08GB、2.27GB、1.61GB,量化位数越小,模型文件相应也越小。

另外还可以看到,模型文件大小与量化位宽的比例并不完全是线性关系。因为除了模型参数本身之外,还有模型架构、框架开销(pytorch)、优化器的动量和梯度信息等,这些都会影响着模型文件的总大小。

小结:本文通过gptq方法分别对微调后的模型进行了8位量化和4位量化,并对比了量化前后模型的性能指标差异,8位量化模型的性能指标变化小,而4位量化模型的性能指标变异较大。就我们这个场景来说,更适合采用8位量化模型。

附1:4位量化模型加载错误

使用如下代码进行先CPU加载再移到目标GPU时会报Found modules on cpu/disk错误:

model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16).eval().to(device)

错误详情:

ValueError: Found modules on cpu/disk. Using Exllama or Exllamav2 backend requires all the modules to be on GPU.You can deactivate exllama backend by setting `disable_exllama=True` in the quantization config object

原因:使用GPTQ方式量化int4模型时使用了exllama,这是一种高效的kernel实现,但需要所有模型参数在GPU上,因此对于GPTQ的4位量化模型,先使用CPU加载再移到GPU这种做法行不通。

解法

  1. 在模型目录下的config.json文件中,在quantization_config配置块中设置disable_exllama=true或者use_exllama=false,来禁用exllama,不过可能会影响推理速度。
  2. 在加载模型时直接加载到GPU上,类似from_disk = AutoModelForCausalLM.from_pretrained(path, device_map="cuda:0")

附2:偏置参数未使用警告

在加载4位量化模型时会报此警告,详细信息如下:

Some weights of the model checkpoint at /data2/anti_fraud/models/Qwen2-1__5B-Instruct-anti_fraud-gptq-int4 were not used when initializing Qwen2ForCausalLM: ['model.layers.0.mlp.down_proj.bias', 'model.layers.0.mlp.gate_proj.bias', 'model.layers.0.mlp.up_proj.bias',
……
'model.layers.9.self_attn.o_proj.bias']

此问题的原因暂时未找到,哪位小伙伴知道原因有劳告知。
这个网页上有人报类似问题,但未说明原因:https://github.com/QwenLM/Qwen2/issues/239

参考资料

  • 欺诈文本分类检测(十一):LLamaFactory多卡微调
  • 欺诈文本分类检测(十二):模型导出与部署
  • 大模型量化技术原理
  • Found modules on cpu/disk错误讨论

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/53700.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【电子通识】规格书上的%FS和%RD具体指什么?

在仪器仪表类的手册上&#xff0c;常见的精度表达规格显示方式&#xff1a;%FS 和%RD 究竟如何解读呢&#xff1f; 术语解说 %RD(Reading)&#xff1a;用于表示对比显示值(读值)存在多少(%)的误差 %FS(Full Scale)&#xff1a;用于表示对比全量程存在多少(%)的误差 %SP(Set Poi…

基于ssm+vue+uniapp的电影交流平台小程序

开发语言&#xff1a;Java框架&#xff1a;ssmuniappJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;M…

多文件编程实现链表创建,插入,输出(上)

linklist.c #include "linklist.h" //创建空的链表&#xff0c;为头结点在堆区分配空间 linklist_t *creat_empty_linklist() {linklist_t *head NULL;head (linklist_t *) malloc(sizeof(linknode_t));if(NULL head){printf("malloc is fail!\n");ret…

项目小结二()

一.个人信息的界面 这里可以进行用户信息的修改&#xff0c;并渲染数据上去 二.这两天&#xff0c;出现的问题&#xff1a; 1.mybatis中 字段取别名 &#xff08;还没验证&#xff0c;是否正确&#xff09; 问题描述&#xff1a;由于实体类中的变量名&#xff0c;与数据库中…

CTF—杂项题目

1.ctfshow-Misc入门-misc17 1 用010editer打开图片后没有直接搜到ctf&#xff1b; 2 用binwalk分析文件发现有一个bzip2的隐藏文件并将其分离&#xff1b; 3 得到一个压缩文件D86.bz2&#xff1b; 4 但使用解压命令进行解压时&#xff0c;显示文件受损&#xff1b; 5 参考别人…

SpringBoot学习(8)RabbitMQ详解

RabbitMQ 即一个消息队列&#xff0c;主要是用来实现应用程序的异步和解耦&#xff0c;同时也能起到消息缓冲&#xff0c;消息分发的作用。 消息中间件最主要的作用是解耦&#xff0c;中间件最标准的用法是生产者生产消息传送到队列&#xff0c;消费者从队列中拿取消息并处理&…

Docker高级管理--Compose容器编排与私有仓库(Docker技术集群与应用)

本文介绍了Docker的三大工具&#xff1a;Docker Machine用于创建和管理Docker主机&#xff0c;Docker Compose用于单引擎模式下的多容器应用部署和管理&#xff0c;而Docker Swarm则是一个集群管理工具&#xff0c;提供微服务应用编排功能。Docker Machine支持在不同环境配置Do…

技术成神之路:设计模式(十三)访问者模式

介绍 访问者模式&#xff08;Visitor Pattern&#xff09;是一种行为型设计模式&#xff0c;它允许你在不改变对象结构的前提下&#xff0c;定义作用于这些对象的新操作。这种模式通过将操作逻辑从对象结构中抽离出来&#xff0c;使得新的操作可以无缝地添加到现有对象中。 1.定…

PDF转Excel小达人养成记

在现代职场&#xff0c;数据管理与格式转换可谓是日常任务的重头戏&#xff1b;有时我们手头有一份PDF文件&#xff0c;但需要将其中的数据整理成Excel表格&#xff0c;这该如何是好&#xff1f;别急&#xff0c;今天我就来给大家介绍几款好用的PDF转Excel工具&#xff0c;以及…

【CanMV K230 AI视觉】 人体关键点检测

【CanMV K230 AI视觉】 人体关键点检测 人体关键点检测 动态测试效果可以去下面网站自己看。 B站视频链接&#xff1a;已做成合集 抖音链接&#xff1a;已做成合集 人体关键点检测 人体关键点检测是指标注出人体关节等关键信息&#xff0c;分析人体姿态、运动轨迹、动作角度等…

【python】OpenCV—Age and Gender Classification

文章目录 1、任务描述2、网络结构2.1 人脸检测2.2 性别分类2.3 年龄分类 3、代码实现4、结果展示5、参考 1、任务描述 性别分类和年龄分类预测 2、网络结构 2.1 人脸检测 输出最高的 200 个 RoI&#xff0c;每个 RoI 7 个值&#xff0c;&#xff08;xx&#xff0c;xx&#x…

chapter14-集合——(List-HashSet)——day18

目录 519-HashSet全面说明 520-数组链表模拟 521-HashSet扩容机制 重要 522-HashSet源码解读1 526-HashSet最佳实践 527-hashSet思考题 519-HashSet全面说明 题一、 两个tom都可以添加成功是因为这是两个对象 看源码做分析&#xff1a;不是直接指向常量池的吗&#xff1f;…

【Python篇】matplotlib超详细教程-由入门到精通(下篇)

文章目录 前言第六部分&#xff1a;保存与导出图表6.1 保存为图片文件示例&#xff1a;保存图表为 PNG 文件解释&#xff1a;关键点&#xff1a; 6.2 保存为高分辨率图片示例&#xff1a;保存为高分辨率图片解释&#xff1a; 6.3 保存为不同文件格式示例&#xff1a;保存为不同…

程序员问题社区

CSDN有问必答 – 程序员问题社区 ★★★★★ 点击我进入程序员问题社区 ★★★★★

OrionX GPU算力池助力AI OCR场景应用

01 AI OCR的历史及概念 OCR&#xff08;Optical Character Recognition&#xff0c;光学字符识别&#xff09;是指采用光学的方式将纸质文档中的文字转换成为黑白点阵的图像文件&#xff0c;通过检测暗、亮的模式确定其形状&#xff0c;然后用字符识别方法将形状翻译成计算机文…

ARM 工业计算机搭载 FUXA 组态软件:开启智能制造新时代

工业自动化已经成为提高生产效率、保证产品质量以及提升企业竞争力的关键因素。而在工业自动化的舞台上&#xff0c;FUXA 组态软件与 ARM 工业计算机的组合正发挥着越来越重要的作用&#xff0c;以其高效稳定、数据可视化、实时监控等优势&#xff0c;在复杂场景应用中展现出卓…

JavaScript第五天(函数,this,严格模式,高阶函数,闭包,递归,正则,ES6)高级

这里写目录标题 JavaScript高级第03天1.函数的定义和调用1.1函数的定义方式1.2函数的调用 2.this2.1函数内部的this指向2.2改变函数内部 this 指向2.2.1 call方法2.2.2 apply方法2.2.3 bind方法2.2.4 call、apply、bind三者的异同 3.严格模式3.1什么是严格模式3.2开启严格模式3…

opencv图像透视处理

引言 在图像处理与计算机视觉领域&#xff0c;透视变换&#xff08;Perspective Transformation&#xff09;是一种重要的图像校正技术&#xff0c;它允许我们根据图像中已知的四个点&#xff08;通常是矩形的四个角&#xff09;和目标位置的四个点&#xff0c;将图像从一个视…

【鸿蒙开发从0到1 day09】

鸿蒙开发基础-ArkUI基本布局 一 .设计资源-图标库1.阿里矢量图图标库2.HarmonyOS图标库 二.布局属性1.内边距2.外边距3.边框线4.边框圆角 三.背景属性1.背景颜色2.背景图片(1)背景图的缩放(2)背景图的显示位置 四.颜色渐变1.线性渐变2.径向渐变 五.阴影六.可选择链操作符(?)七…

如何更改磁盘卷标名称?

磁盘卷标&#xff08;Volume Label&#xff09;是用来标识和管理磁盘驱动器的名称&#xff0c;通常在文件资源管理器中显示。卷标有助于用户快速识别和区分不同的磁盘或分区。 为什么要更改磁盘卷标名称&#xff1f; 磁盘卷标作为磁盘的名字&#xff0c;可以帮助用户更容易地识…