【CanMV K230 AI视觉】 人体关键点检测
- 人体关键点检测
动态测试效果可以去下面网站自己看。
B站视频链接:已做成合集
抖音链接:已做成合集
人体关键点检测
人体关键点检测是指标注出人体关节等关键信息,分析人体姿态、运动轨迹、动作角度等。
'''
实验名称:人体关键点检测
实验平台:01Studio CanMV K230
教程:wiki.01studio.cc
'''from libs.PipeLine import PipeLine, ScopedTiming
from libs.AIBase import AIBase
from libs.AI2D import Ai2d
import os
import ujson
from media.media import *
from time import *
import nncase_runtime as nn
import ulab.numpy as np
import time
import utime
import image
import random
import gc
import sys
import aidemo# 自定义人体关键点检测类
class PersonKeyPointApp(AIBase):def __init__(self,kmodel_path,model_input_size,confidence_threshold=0.2,nms_threshold=0.5,rgb888p_size=[1280,720],display_size=[1920,1080],debug_mode=0):super().__init__(kmodel_path,model_input_size,rgb888p_size,debug_mode)self.kmodel_path=kmodel_path# 模型输入分辨率self.model_input_size=model_input_size# 置信度阈值设置self.confidence_threshold=confidence_threshold# nms阈值设置self.nms_threshold=nms_threshold# sensor给到AI的图像分辨率self.rgb888p_size=[ALIGN_UP(rgb888p_size[0],16),rgb888p_size[1]]# 显示分辨率self.display_size=[ALIGN_UP(display_size[0],16),display_size[1]]self.debug_mode=debug_mode#骨骼信息self.SKELETON = [(16, 14),(14, 12),(17, 15),(15, 13),(12, 13),(6, 12),(7, 13),(6, 7),(6, 8),(7, 9),(8, 10),(9, 11),(2, 3),(1, 2),(1, 3),(2, 4),(3, 5),(4, 6),(5, 7)]#肢体颜色self.LIMB_COLORS = [(255, 51, 153, 255),(255, 51, 153, 255),(255, 51, 153, 255),(255, 51, 153, 255),(255, 255, 51, 255),(255, 255, 51, 255),(255, 255, 51, 255),(255, 255, 128, 0),(255, 255, 128, 0),(255, 255, 128, 0),(255, 255, 128, 0),(255, 255, 128, 0),(255, 0, 255, 0),(255, 0, 255, 0),(255, 0, 255, 0),(255, 0, 255, 0),(255, 0, 255, 0),(255, 0, 255, 0),(255, 0, 255, 0)]#关键点颜色,共17个self.KPS_COLORS = [(255, 0, 255, 0),(255, 0, 255, 0),(255, 0, 255, 0),(255, 0, 255, 0),(255, 0, 255, 0),(255, 255, 128, 0),(255, 255, 128, 0),(255, 255, 128, 0),(255, 255, 128, 0),(255, 255, 128, 0),(255, 255, 128, 0),(255, 51, 153, 255),(255, 51, 153, 255),(255, 51, 153, 255),(255, 51, 153, 255),(255, 51, 153, 255),(255, 51, 153, 255)]# Ai2d实例,用于实现模型预处理self.ai2d=Ai2d(debug_mode)# 设置Ai2d的输入输出格式和类型self.ai2d.set_ai2d_dtype(nn.ai2d_format.NCHW_FMT,nn.ai2d_format.NCHW_FMT,np.uint8, np.uint8)# 配置预处理操作,这里使用了pad和resize,Ai2d支持crop/shift/pad/resize/affine,具体代码请打开/sdcard/app/libs/AI2D.py查看def config_preprocess(self,input_image_size=None):with ScopedTiming("set preprocess config",self.debug_mode > 0):# 初始化ai2d预处理配置,默认为sensor给到AI的尺寸,您可以通过设置input_image_size自行修改输入尺寸ai2d_input_size=input_image_size if input_image_size else self.rgb888p_sizetop,bottom,left,right=self.get_padding_param()self.ai2d.pad([0,0,0,0,top,bottom,left,right], 0, [0,0,0])self.ai2d.resize(nn.interp_method.tf_bilinear, nn.interp_mode.half_pixel)self.ai2d.build([1,3,ai2d_input_size[1],ai2d_input_size[0]],[1,3,self.model_input_size[1],self.model_input_size[0]])# 自定义当前任务的后处理def postprocess(self,results):with ScopedTiming("postprocess",self.debug_mode > 0):# 这里使用了aidemo库的person_kp_postprocess接口results = aidemo.person_kp_postprocess(results[0],[self.rgb888p_size[1],self.rgb888p_size[0]],self.model_input_size,self.confidence_threshold,self.nms_threshold)return results#绘制结果,绘制人体关键点def draw_result(self,pl,res):with ScopedTiming("display_draw",self.debug_mode >0):if res[0]:pl.osd_img.clear()kpses = res[1]for i in range(len(res[0])):for k in range(17+2):if (k < 17):kps_x,kps_y,kps_s = round(kpses[i][k][0]),round(kpses[i][k][1]),kpses[i][k][2]kps_x1 = int(float(kps_x) * self.display_size[0] // self.rgb888p_size[0])kps_y1 = int(float(kps_y) * self.display_size[1] // self.rgb888p_size[1])if (kps_s > 0):pl.osd_img.draw_circle(kps_x1,kps_y1,5,self.KPS_COLORS[k],4)ske = self.SKELETON[k]pos1_x,pos1_y= round(kpses[i][ske[0]-1][0]),round(kpses[i][ske[0]-1][1])pos1_x_ = int(float(pos1_x) * self.display_size[0] // self.rgb888p_size[0])pos1_y_ = int(float(pos1_y) * self.display_size[1] // self.rgb888p_size[1])pos2_x,pos2_y = round(kpses[i][(ske[1] -1)][0]),round(kpses[i][(ske[1] -1)][1])pos2_x_ = int(float(pos2_x) * self.display_size[0] // self.rgb888p_size[0])pos2_y_ = int(float(pos2_y) * self.display_size[1] // self.rgb888p_size[1])pos1_s,pos2_s = kpses[i][(ske[0] -1)][2],kpses[i][(ske[1] -1)][2]if (pos1_s > 0.0 and pos2_s >0.0):pl.osd_img.draw_line(pos1_x_,pos1_y_,pos2_x_,pos2_y_,self.LIMB_COLORS[k],4)gc.collect()else:pl.osd_img.clear()# 计算padding参数def get_padding_param(self):dst_w = self.model_input_size[0]dst_h = self.model_input_size[1]input_width = self.rgb888p_size[0]input_high = self.rgb888p_size[1]ratio_w = dst_w / input_widthratio_h = dst_h / input_highif ratio_w < ratio_h:ratio = ratio_welse:ratio = ratio_hnew_w = (int)(ratio * input_width)new_h = (int)(ratio * input_high)dw = (dst_w - new_w) / 2dh = (dst_h - new_h) / 2top = int(round(dh - 0.1))bottom = int(round(dh + 0.1))left = int(round(dw - 0.1))right = int(round(dw - 0.1))return top, bottom, left, rightif __name__=="__main__":# 显示模式,默认"hdmi",可以选择"hdmi"和"lcd"display_mode="lcd"if display_mode=="hdmi":display_size=[1920,1080]else:display_size=[800,480]# 模型路径kmodel_path="/sdcard/app/tests/kmodel/yolov8n-pose.kmodel"# 其它参数设置confidence_threshold = 0.2nms_threshold = 0.5rgb888p_size=[1920,1080]# 初始化PipeLinepl=PipeLine(rgb888p_size=rgb888p_size,display_size=display_size,display_mode=display_mode)pl.create()# 初始化自定义人体关键点检测实例person_kp=PersonKeyPointApp(kmodel_path,model_input_size=[320,320],confidence_threshold=confidence_threshold,nms_threshold=nms_threshold,rgb888p_size=rgb888p_size,display_size=display_size,debug_mode=0)person_kp.config_preprocess()clock = time.clock()try:while True:os.exitpoint()clock.tick()img=pl.get_frame() # 获取当前帧数据res=person_kp.run(img) # 推理当前帧person_kp.draw_result(pl,res) # 绘制结果到PipeLine的osd图像print(res) #打印结果pl.show_image() # 显示当前的绘制结果gc.collect()print(clock.fps()) #打印帧率#IDE中断释放相关资源except Exception as e:sys.print_exception(e)finally:person_kp.deinit()pl.destroy()
使用类 | 说明 |
---|---|
PersonKeyPointApp | 人体关键点检测类 |