LLMs之MiniCPM:MiniCPM(揭示端侧大语言模型的无限潜力)的简介、安装和使用方法、案例应用之详细攻略

LLMs之MiniCPM:MiniCPM(揭示端侧大语言模型的无限潜力)的简介、安装和使用方法、案例应用之详细攻略

目录

MiniCPM的简介

0、更新日志

1、公开的模型

2、局限性

3、文本模型评测

越级比较:

同级比较:

Chat模型比较:

DPO后模型比较:

MiniCPM-2B-128k 模型评测

MiniCPM-MoE-8x2B模型评测

多模态模型评测

MiniCPM的安装和使用方法

1、 模型下载

语言模型

多模态模型

2、模型推理

T1、Huggingface 模型

MiniCPM-2B

MiniCPM-2B (Llama Format)

MiniCPM-V

T2、vLLM 推理

安装vLLM

测试样例

期望输出

T3、llama.cpp、Ollama、fastllm、mlx_lm推理

llama.cpp

ollama

fastllm

mlx_lm

3、模型部署

手机部署

部署步骤

部署性能

Demo & API 部署

基于Gradio的网页版Demo

MiniCPM的案例应用


MiniCPM的简介

MiniCPM 是面壁智能与清华大学自然语言处理实验室共同开源的系列端侧大模型,主体语言模型 MiniCPM-2B 仅有 24亿(2.4B)的非词嵌入参数量, 总计2.7B参数量。

  • 经过 SFT 后,MiniCPM-2B 在公开综合性评测集上与 Mistral-7B 表现相近(中文、数学、代码能力更优),整体性能超越 Llama2-13B、MPT-30B、Falcon-40B 等模型。
  • 经过 DPO 后,MiniCPM-2B 在当前最接近用户体感的评测集 MTBench 上也超越了 Llama2-70B-Chat、Vicuna-33B、Mistral-7B-Instruct-v0.1、Zephyr-7B-alpha 等众多代表性开源大模型。
  • 以 MiniCPM-2B 为基础构建端侧多模态大模型 MiniCPM-V 2.0,在多个测试基准中实现了 7B 以下模型的最佳性能,在 OpenCompass 榜单上超过了 Qwen-VL-Chat 9.6B、CogVLM-Chat 17.4B 和 Yi-VL 34B 等更大参数规模的模型。MiniCPM-V 2.0 还展现出领先的 OCR 能力,在场景文字识别能力上接近 Gemini Pro。
  • 经过 Int4 量化后,MiniCPM 可在手机上进行部署推理,流式输出速度略高于人类说话速度。MiniCPM-V 也直接跑通了多模态大模型在手机上的部署。
  • 一张1080/2080可高效参数微调,一张3090/4090可全参数微调,一台机器可持续训练 MiniCPM,二次开发成本较低。

GitHub地址:GitHub - OpenBMB/MiniCPM: MiniCPM-2B: An end-side LLM outperforms Llama2-13B.

0、更新日志

  • 2024/04/11 开源MiniCPM-V-2.0、MiniCPM-2B-128k、MiniCPM-MoE-8x2B和MiniCPM-1B!点击这里查看技术博客。
  • 2024/03/16 MiniCPM-2B 的30余个中间检查点开放了!HuggingFace链接
  • 2024/02/13 支持了llama.cpp
  • 2024/02/09 我们在README里加入了一个开源社区章节,用来收集开源社区对MiniCPM的支持案例。
  • 2024/02/08 我们更新了llama-format的模型权重,方便大家更加快捷地使用我们的模型。
  • 2024/02/01 初始发布。

1、公开的模型

我们完全开源MiniCPM系列的模型参数供学术研究和有限商用。 具体而言,我们目前已公开以下模型,地址详见 模型下载 部分

  • 基于MiniCPM-2B的指令微调与人类偏好对齐版本MiniCPM-2B-SFT/DPO
  • 基于MiniCPM-2B的多模态模型MiniCPM-V 2.0
  • MiniCPM-2B-SFT/DPO的Int4量化版MiniCPM-2B-SFT/DPO-Int4
  • MiniCPM-2B的128k长文本版本MiniCPM-2B-128k
  • MiniCPM-2B的MoE版本MiniCPM-MoE-8x2B
  • 更轻量级的MiniCPM-1B指令微调版本MiniCPM-1B-SFT
  • 基于MLC-LLM、LLMFarm开发的MiniCPM手机端程序,文本及多模态模型均可在手机端进行推理
  • MiniCPM-2B训练过程中的30个Checkpoints供模型机理研究。

2、局限性

  • 受限于模型规模,模型可能出现幻觉性问题。其中由于DPO模型生成的回复内容更长,更容易出现幻觉。我们也将持续进行MiniCPM模型的迭代改进。
  • 为了保证在学术研究用途上模型的通用性,我们未对模型进行任何身份认同训练。同时由于我们用ShareGPT开源语料作为部分训练数据,模型可能会输出类似GPT系列模型的身份认同信息。
  • 受限于模型规模,模型的输出受到提示词(prompt)的影响较大,可能多次尝试产生不一致的结果。
  • 受限于模型容量,模型的知识记忆较不准确,后续我们将结合RAG方法来增强模型的知识记忆能力。

3、文本模型评测

越级比较:

模型平均分英文均分中文均分C-EvalCMMLUMMLUHumanEvalMBPPGSM8KMATHBBHARC-EARC-CHellaSwag
Llama2-7B35.4036.2131.76532.4231.1144.3212.227.1713.571.833.2375.2542.7575.62*
Qwen-7B49.4647.1959.65558.9660.3557.6517.0742.1541.245.3437.7583.4264.7675.32*
Deepseek-7B39.9639.1543.6442.8244.4547.8220.1241.4515.851.5333.3874.58*42.15*75.45*
Mistral-7B48.9749.9644.5446.1242.9662.6927.4445.233.135.041.0683.9270.7380.43*
Llama2-13B41.4842.4437.1937.3237.0654.7117.0732.5521.152.2537.9278.87*58.1979.23*
MPT-30B38.1739.8230.7229.3432.0946.5621.9535.3610.311.5638.2278.66*46.08*79.72*
Falcon-40B43.6244.2140.9340.2941.5753.5324.3936.5322.441.9236.2481.94*57.6883.26*
MiniCPM-2B52.3352.651.151.1351.0753.4650.0047.3153.8310.2436.8785.4468.0068.25

同级比较:

模型平均分英文均分中文均分C-EvalCMMLUMMLUHumanEvalMBPPGSM8KMATHBBHARC-EARC-CHellaSwag
TinyLlama-1.1B25.3625.5524.52525.0224.0324.36.7119.912.270.7428.7860.77*28.15*58.33*
Qwen-1.8B34.7231.8747.5749.8145.3243.377.9317.8019.262.4229.0763.97*43.6959.28*
Gemini Nano-3B-------27.2(report)22.8(report)-42.4(report)---
StableLM-Zephyr-3B43.4646.3130.6230.3430.8945.935.3731.8552.5412.4937.6873.7855.3871.87*
Phi-2-2B48.8454.4123.7823.3724.1852.6647.5655.0457.163.543.3986.1171.2573.07*
MiniCPM-2B52.3352.651.1051.1351.0753.4650.0047.3153.8310.2436.8785.4468.0068.25

Chat模型比较:

模型平均分英文均分中文均分C-EvalCMMLUMMLUHumanEvalMBPPGSM8KMATHBBHARC-EARC-CHellaSwag
ChatGLM2-6B37.9835.1750.6352.0549.2145.7710.379.3822.745.9632.674.4556.8258.48*
Mistral-7B-Instruct-v0.144.3645.8937.5138.0636.9653.5629.2739.3428.733.4839.5281.6163.9973.47*
Mistral-7B-Instruct-v0.250.9152.8342.23542.5541.9260.5136.5948.9540.494.9539.8186.2873.3884.55*
Qwen-7B-Chat44.9342.0557.958.5757.2356.0315.8540.5242.238.337.3464.44*39.25*74.52*
Yi-6B-Chat50.4645.8970.99570.8871.1162.9514.0228.3436.543.8837.4384.8970.3974.6*
Baichuan2-7B-Chat44.6842.7453.3953.2853.55321.3432.3225.256.3237.4679.6360.1569.23*
Deepseek-7B-chat49.3449.5648.33546.9549.7251.6740.8548.4848.524.2635.776.8563.0576.68*
Llama2-7B-Chat38.1639.1733.5934.5432.6447.6414.0227.421.152.0835.5474.2854.7875.65*
MiniCPM-2B52.3352.651.1051.1351.0753.4650.0047.3153.8310.2436.8785.4468.0068.25

DPO后模型比较:

模型MT-bench
GPT-4-turbo9.32
GPT-3.5-turbo8.39
Mistral-8*7b-Instruct-v0.18.30
Claude-2.18.18
Zephyr-7B-beta7.34
MiniCPM-2B7.25
Vicuna-33B7.12
Zephyr-7B-alpha6.88
LLaMA-2-70B-chat6.86
Mistral-7B-Instruct-v0.16.84
MPT-34B-instruct6.39

MiniCPM-2B-128k 模型评测

Modelavgavg w/o code&mathpasskeynumber_stringkv_retrievallongbook_choice_englongbook_qa_chnlongbook_qa_englongbook_sum_englongdialogue_qa_engmath_calcmath_findcode_debugcode_run
LWM-Text-128k24.4533.6210097.80.628.8215.9314.319.991.503.4320.051
Yarn-Mistral-7b-128k19.8427.3692.71027.9515.499.559.067.5017.140.761.25
Mistral-7B-Instruct-v0.2(ABF 1000w)27.7536.910078.983.637.1211.7417.3721.129.5029.4317.510
Yi-6B-200k22.1532.5410094.92036.6815.079.20.923.504.290.510.75
chatglm3-6b-128k25.5836.5789.9399.665.246.2910.78.3825.916.5085.331
MiniCPM-2.4B-128k27.3237.6898.3199.83929.6923.0616.3315.739.504.2922.080

MiniCPM-MoE-8x2B模型评测

ModelBBHMMLUCEvalCMMLUHumanEvalMBPP†GSM8KMATH
Llama2-34B*44.162.6--22.633.042.26.24
Mistral-7B-Instruct-v0.239.8160.5142.5541.9236.5939.6340.494.95
Gemma-7B*55.164.3--32.344.446.424.3
Qwen1.5-7B*40.26174.173.13637.462.520.3
Deepseek-MoE(16B)*-45.040.642.526.839.218.84.3
MiniCPM-2.4B36.8753.4651.1351.0750.0035.9353.8310.24
MiniCPM-MoE-8x2B39.2258.9058.1158.8055.4941.6861.5610.52

注:* 表示结果取自技术报告。† 表示评测集为MBPP全集。

多模态模型评测

ModelSizeTextVQA valDocVQA testOCRBenchOpenCompassMMEMMB dev(en)MMB dev(zh)MMMU valMathVistaLLaVA BenchObject HalBench
Proprietary models
Gemini Pro Vision-74.688.168063.82148.975.274.048.945.879.9-
GPT-4V-78.088.464563.21771.575.175.053.847.893.186.4 / 92.7
Open-source models 6B~34B
Yi-VL-6B6.7B45.5*17.1*29049.31915.168.668.340.328.851.9-
Qwen-VL-Chat9.6B61.562.648852.11860.060.656.737.033.867.756.2 / 80.0
Yi-VL-34B34B43.4*16.9*29052.62050.271.171.445.130.762.3-
DeepSeek-VL-7B7.3B64.7*47.0*43555.61765.474.172.838.336.877.8-
TextMonkey9.7B64.366.7558--------
CogVLM-Chat17.4B70.433.3*59052.51736.663.753.837.334.773.973.6 / 87.4
Open-source models 1B~3B
DeepSeek-VL-1.3B1.7B58.4*37.9*41346.01531.664.061.233.829.451.1-
MobileVLM V23.1B57.519.4*--1440.5(P)63.2-----
Mini-Gemini2.2B56.234.2*--1653.059.8-31.7---
MiniCPM-V2.8B60.638.236647.61650.267.965.338.328.951.378.4 / 88.5
MiniCPM-V 2.02.8B74.171.960555.01808.669.668.138.238.769.285.5 / 92.2

* 我们自己评测了正式开源的模型权重。

MiniCPM的安装和使用方法

1、 模型下载

语言模型

HuggingFaceModelScopeWiseModel
MiniCPM-2B-sft-bf16MiniCPM-2B-sft-bf16MiniCPM-2B-sft-bf16
MiniCPM-2B-dpo-bf16MiniCPM-2B-dpo-bf16MiniCPM-2B-dpo-bf16
MiniCPM-2B-128kMiniCPM-2B-128k
MiniCPM-MoE-8x2BMiniCPM-MoE-8x2B
MiniCPM-1B-sft-bf16MiniCPM-1B-sft-bf16

注: 更多模型版本见这里。

多模态模型

HuggingFaceModelScopeWiseModel
MiniCPM-V 2.0MiniCPM-V 2.0
MiniCPM-VMiniCPM-VMiniCPM-V
OmniLMM-12BOmniLMM-12BOmniLMM-12B

2、模型推理

在线colab体验地址:https://colab.research.google.com/drive/1tJcfPyWGWA5HezO7GKLeyeIso0HyOc0l?usp=sharing

T1、Huggingface 模型
MiniCPM-2B
  • 安装transformers>=4.36.0以及accelerate后,运行以下代码
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
torch.manual_seed(0)path = 'openbmb/MiniCPM-2B-dpo-bf16'
tokenizer = AutoTokenizer.from_pretrained(path)
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True)responds, history = model.chat(tokenizer, "山东省最高的山是哪座山, 它比黄山高还是矮?差距多少?", temperature=0.5, top_p=0.8, repetition_penalty=1.02)
print(responds)

期望输出

山东省最高的山是泰山,海拔1545米。
相对于黄山(海拔1864米),泰山海拔较低,相差约319米。

MiniCPM-2B (Llama Format)

我们将MiniCPM的模型权重转化成了Llama代码可以直接调用的格式,以便大家尝试:

import torch
from transformers import LlamaTokenizerFast, LlamaForCausalLM
model_path = "openbmb/MiniCPM-2B-dpo-bf16-llama-format"
tokenizer = LlamaTokenizerFast.from_pretrained(model_path)
model = LlamaForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True)prompt="Now you act like a terminal situated within a beginner's C++ practice repository folder, please provide the output for the command: `ls -l`"
input_ids = tokenizer.encode("<用户>{}<AI>".format(prompt), return_tensors='pt', add_special_tokens=True).cuda()
responds = model.generate(input_ids, temperature=0.3, top_p=0.8, repetition_penalty=1.02, max_length=1024)
responds = tokenizer.decode(responds[0], skip_special_tokens=True)
print(responds)
MiniCPM-V
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizermodel = AutoModel.from_pretrained('openbmb/MiniCPM-V', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V', trust_remote_code=True)
model.eval().cuda()image = Image.open('xx.jpg').convert('RGB')
question = 'What is in the image?'
msgs = [{'role': 'user', 'content': question}]res, context, _ = model.chat(image=image,msgs=msgs,context=None,tokenizer=tokenizer,sampling=True,temperature=0.7
)
print(res)
 

T2、vLLM 推理

安装vLLM
pip install "vllm>=0.4.1"
测试样例
python inference/inference_vllm.py --model_path <hf_repo_path> --prompt_path prompts/prompt_demo.txt
期望输出
<用户>: Which city is the capital of China?
<AI>:The capital city of China is Beijing. Beijing is a major political, cultural, and economic center in China, and it is known for its rich history, beautiful architecture, and vibrant nightlife. It is also home to many of China's most important cultural and historical sites, including the Forbidden City, the Great Wall of China, and the Temple of Heaven. Beijing is a popular destination for tourists from around the world, and it is an important hub for international business and trade.

T3、llama.cpp、Ollama、fastllm、mlx_lm推理

MiniCPM支持llama.cpp 、ollama、fastllm、mlx_lm推理。感谢@runfuture对llama.cpp和ollama的适配。

llama.cpp
  1. 安装llama.cpp
  2. 下载gguf形式的模型。下载链接-fp16格式 下载链接-q4km格式
  3. 在命令行运行示例代码:
./main -m ../../model_ckpts/download_from_hf/MiniCPM-2B-dpo-fp16-gguf.gguf --prompt "<用户>写藏头诗,藏头是龙年大吉<AI>" --temp 0.3 --top-p 0.8 --repeat-penalty 1.05

更多参数调整详见

ollama
  1. 安装ollama
  2. 在命令行运行:
ollama run modelbest/minicpm-2b-dpo
fastllm
import torch
from transformers import AutoTokenizer, LlamaTokenizerFast, AutoModelForCausalLM
path = 'openbmb/MiniCPM-2B-dpo-fp16'
tokenizer = AutoTokenizer.from_pretrained(path)
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.float16, device_map='cuda', trust_remote_code=True)
from fastllm_pytools import llm
llm.set_device_map("cpu")
model = llm.from_hf(model, tokenizer, dtype = "float16") # dtype支持 "float16", "int8", "int4"
print(model.response("<用户>山东省最高的山是哪座山, 它比黄山高还是矮?差距多少?<AI>", top_p=0.8, temperature=0.5, repeat_penalty=1.02))
  1. 编译安装fastllm
  2. 模型推理
 
mlx_lm

安装mlx_lm库

pip install mlx_lm

下载转换后的模型权重MiniCPM-2B-sft-bf16-llama-format-mlx

模型推理

python -m mlx_lm.generate --model mlx-community/MiniCPM-2B-sft-bf16-llama-format-mlx --prompt "hello, tell me a joke." --trust-remote-code

3、模型部署

手机部署

部署步骤
  • 进行Int4量化后,MiniCPM只占2GB空间,具备在端侧手机进行模型部署的条件。
  • 对于不同的操作系统,我们进行了不同的适配。
  • 注意:当前开源框架对手机支持还在完善,并非所有芯片与操作系统版本均能成功运行MLC-LLM或LLMFarm。
  • Android、HarmonyOS
    • 使用开源框架MLC-LLM进行模型适配。
    • 支持文本模型、多模态模型。
    • 适用于MiniCPM-2B-SFT-INT4、MiniCPM-2B-DPO-INT4、MiniCPM-V。
    • 编译安装MiniCPM指南
  • iOS
    • 使用开源框架LLMFarm进行模型适配。
    • 支持文本模型。
    • 适用于MiniCPM-2B-SFT-INT4、MiniCPM-2B-DPO-INT4。
    • 编译安装MiniCPM指南
部署性能
  • 我们未针对手机推理模型进行深度优化和系统测试,仅验证MiniCPM使用手机芯片进行推理的可行性。我们也欢迎更多开发者进一步调优并更新下面的测试列表,不断提升端侧大模型在手机上的推理性能
手机型号操作系统处理器Memory(GB)文本吞吐(token/s)
OPPO Find N3Android 13snapdragon 8 Gen2126.5
Samsung S23 UltraAndroid 14snapdragon 8 Gen2126.4
Meizu M182QAndroid 11snapdragon 888Plus83.7
Xiaomi 12 ProAndroid 13snapdragon 8 Gen18+33.7
Xiaomi Redmi K40Android 11snapdragon 87083.5
Oneplus LE 2100Android 13snapdragon 870123.5
Oneplus HD1900Android 11snapdragon 86583.2
Oneplus HD1900Android 11snapdragon 85583.0
Oneplus HD1905Android 10snapdragon 85583.0
Oneplus HD1900Android 11snapdragon 85583.0
Xiaomi MI 8Android 9snapdragon 84562.3
Huawei Nova 11SEHarmonyOS 4.0.0snapdragon 778121.9
Xiaomi MIX 2Android 9snapdragon 83561.3
iPhone 15 ProiOS 17.2.1A17 pro818.0
iPhone 15iOS 17.2.1A16615.0
iPhone 12 ProiOS 16.5.1A1465.8
iPhone 12iOS 17.2.1A1445.8
iPhone 11iOS 16.6A1344.6
Xiaomi Redmi K50HyperOS 1.0.2MediaTek Dimensity 8100123.5
  • 我们也使用MLC-LLM验证了在手机上部署MiniCPM-V系列模型的可行性,能够正常输入输出,但也存在图片处理时间较长的问题,需要进一步优化,兼容性问题也需要进一步解决。下面的动图是使用小米14 Pro运行MiniCPM-V 2.0的屏幕录像,没有进行任何编辑。

Demo & API 部署

基于Gradio的网页版Demo
  • 使用如下命令启动基于Gradio的网页版demo:
# generation powered by vllm
python demo/vllm_based_demo.py --model_path <vllmcpm_repo_path>
# generation powered by huggingface
python demo/hf_based_demo.py --model_path <hf_repo_path>

MiniCPM的案例应用

持续更新中……

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/5265.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Git安全实践:保护你的代码仓库

Git安全实践&#xff1a;保护你的代码仓库 概要&#xff1a; 在软件开发领域&#xff0c;代码仓库的安全性至关重要。本文深入探讨了Git的安全实践&#xff0c;包括访问控制、加密传输、审计与监控、漏洞管理和安全意识提升等方面&#xff0c;旨在帮助读者构建一个安全可靠的代…

【TCP:可靠数据传输,快速重传,流量控制,TCP流量控制】

文章目录 可靠数据传输TCP&#xff1a;可靠数据传输TCP发送方事件快速重传流量控制TCP流量控制 可靠数据传输 TCP&#xff1a;可靠数据传输 TCP在IP不可靠服务的基础上建立了rdt 管道化的报文段 GBN or SR 累计确认&#xff08;像GBN&#xff09;单个重传定时器&#xff08;像…

XYCTF 2024

Web 参考博客&#xff1a;https://www.yuque.com/yunzhiyunweiji/wrgkex/rfpnkn0293l7cp09#ezMake ezhttp Via - HTTP | MDN 代理那里难住了 XFF不给用可以用client-ip ezmd5 让我们上传图片并比较&#xff0c;结合题目名可以猜测应该是比较两个图片的md5值是否相同&…

C# 窗体控件BackgroundWorker

介绍 如果只有一个主线程&#xff0c;那么当窗体执行一些循环之类的操作时&#xff0c;窗体界面的控件将无法操作&#xff0c;因为该线程的资源&#xff0c;都拿来执行循环操作了&#xff0c;这是&#xff0c;我们可以使用Thread类来开启另一个线程&#xff0c;来进行繁琐冗长的…

ES6之rest参数、扩展运算符

文章目录 前言一、rest参数二、扩展运算符 1.将数组转化为逗号分隔的参数序列2.应用总结 前言 rest参数与arguments变量相似。ES6引入rest参数代替arguments&#xff0c;获取函数实参。扩展运算符能将数组转化为参数序列。 一、rest参数 function namelist1() {console.log(ar…

使用硬盘对拷方法将数据无损转移到另一个硬盘!

硬盘对拷&#xff0c;其实就是磁盘克隆&#xff0c;很多人喜欢将其说成对拷&#xff0c;或者硬盘复制等&#xff0c;但不管怎么说&#xff0c;他们的目的都是一个&#xff0c;想要把原硬盘上的全部数据&#xff08;包括系统、程序、个人文件、隐藏配置数据等&#xff09;都无损…

【好书推荐8】《智能供应链:预测算法理论与实战》

【好书推荐8】《智能供应链&#xff1a;预测算法理论与实战》 写在最前面编辑推荐内容简介作者简介目录精彩书摘前言/序言我为什么要写这本书这本书能带给你什么 致谢 &#x1f308;你好呀&#xff01;我是 是Yu欸 &#x1f30c; 2024每日百字篆刻时光&#xff0c;感谢你的陪伴…

Notion是什么,Notion软件下载,Notion官方网站在哪里?国内用户Notion怎么订阅升级会员?

Notion是什么 Notion&#xff0c;一款强大的多功能工具&#xff0c;可用于组织笔记、任务、项目、数据库和文档等。 Notion软件下载 这个到Notion官方网站下载就可以了。 怎么订阅Notion会员 注册好了Notion的账号&#xff0c;来到首页&#xff0c;点击设置&#xff0c;左边…

虚析构与纯虚析构

这里的new Cat("Tom"&#xff09;是由于基类函数中的构造函数里面带有string变量 1. 法一:利用虚函数&#xff0c;虚化基类中的析构函数 virtual ~Animal() { cout << "动物的析构函数调用" << endl; } 2. 法二:利用纯…

边缘计算概述_2.边缘计算的特点

1. 边缘计算的位置和作用 边缘计算是在靠近物或数据源头的网络边缘侧&#xff0c;融合网络、计算、存储、应用核心能力的分布式开放平台&#xff08;架构&#xff09;&#xff0c;就近提供边缘智能服务&#xff0c;满足行业数字化在敏捷联接、实时业务、数据优化、应用智能、安…

JAVA自定义日期选择器

下载jar地址&#xff0c; https://toedter.com/jcalendar/ jar包下载地址 依赖包如下图所示&#xff1a; 整个项目代码已经上传到CSDN https://download.csdn.net/download/qq_30273575/89241601?ydrefereraHR0cHM6Ly9tcC5jc2RuLm5ldC9tcF9kb3dubG9hZC9tYW5hZ2UvZG93bmxvYWQ…

ROS1快速入门学习笔记 - 10服务数据的定义和使用

目录 一、服务模型&#xff08;客户端/服务器&#xff09; 二、自定义服务数据 1. 定义srv文件 2. 在package.xml中添加功能包依赖 3. 在CMakeLists.txt添加编译选项 4. 编译生成语言相关文件 5. 配置服务器/客户端代码编译规则 6. 编译并运行程序 7. Python文件 一…

图论单源最短路径——spfa

【模板】单源最短路径&#xff08;弱化版&#xff09; 本题用的spfa 题目背景 本题测试数据为随机数据&#xff0c;在考试中可能会出现构造数据让SPFA不通过&#xff0c;如有需要请移步 P4779。 题目描述 如题&#xff0c;给出一个有向图&#xff0c;请输出从某一点出发到…

若依:Linux Centos 7.9 安装部署RuoYi前后端集成版

目录 1.虚拟机操作系统版本 2.删除旧的jdk 3.下载JDK 17 &#xff1a; 4.下载 mvn 3.9.6&#xff1a; 5.下载mysql:5.7.44版本 6.git下载若依&#xff1a; 7.修改数据库连接&#xff1a; 8.mvn 清理和打包 9.启动若依&#xff1a; 1.虚拟机操作系统版本 2.删除旧的jd…

几个容器网络问题实战解析

容器云平台和容器网络紧密结合&#xff0c;共同构建了容器化应用程序的网络基础设施&#xff0c;实现了容器之间的通信、隔离和安全性。文中容器云平台采用的容器网络组件是calico&#xff0c;这个是业界普遍采用的一种方案&#xff0c;性能及安全性在同类产品中都是比较好的。…

socat用法记录

1.串口转网络 1.1 物理串口tcp端口服务端模式 socat TCP-LISTEN:8899,fork,reuseaddr FILE:/usr/local/dev/com1,b9600,cs8,raw,echo01.2 物理串口UDP端口 socat UDP-LISTEN:8899,fork,reuseaddr FILE:/usr/local/dev/com1,b9600,cs8,raw,echo01.3 虚拟串口转TCP客户端模式 …

什么是视频号小店?应该如何操作?全网最详细的解答来了!

大家好&#xff0c;我是电商糖果 “视频号小店”这个词这两年在电商圈很火&#xff0c;但是因为它是2022年下半年才出来的。 就有很多刚接触电商的朋友&#xff0c;对它并不了解。 于是就有不少朋友问糖果&#xff0c;视频号小店去哪里找&#xff1f;什么是视频号小店&#…

汽车信息安全入门总结(2)

目录 1.引入 2.汽车信息安全技术 3.密码学基础知识 4.小结 1.引入 上篇汽车信息安全入门总结(1)-CSDN博客主要讲述了汽车信息安全应该关注的点&#xff0c;以及相关法规和标准&#xff0c;限于篇幅&#xff0c;继续聊信息安全相关技术以及需要掌握的密码学基础知识。 2.汽…

OpenAI发布GPT-4.0使用指南

大家好&#xff0c;ChatGPT 自诞生以来&#xff0c;凭借划时代的创新&#xff0c;被无数人一举送上生成式 AI 的神坛。在使用时&#xff0c;总是期望它能准确理解我们的意图&#xff0c;却时常发现其回答或创作并非百分之百贴合期待。这种落差可能源于我们对于模型性能的过高期…

区块链技术下的DApp与电商:融合创新,开启商业新纪元

区块链技术的蓬勃发展正引领着一种新型应用程序的崛起——去中心化应用程序&#xff08;DApp&#xff09;。DApp并非传统的中心化应用&#xff0c;它构建于去中心化网络之上&#xff0c;融合了智能合约与前端用户界面&#xff0c;为用户提供了全新的交互体验。智能合约&#xf…