【好书推荐8】《智能供应链:预测算法理论与实战》

【好书推荐8】《智能供应链:预测算法理论与实战》

  • 写在最前面
  • 编辑推荐
  • 内容简介
  • 作者简介
  • 目录
  • 精彩书摘
  • 前言/序言
    • 我为什么要写这本书
    • 这本书能带给你什么
  • 致谢


请添加图片描述

🌈你好呀!我是 是Yu欸
🌌 2024每日百字篆刻时光,感谢你的陪伴与支持 ~
🚀 欢迎一起踏上探险之旅,挖掘无限可能,共同成长!

写在最前面

🌟 感谢大家的陪伴和支持,2024年争取每周二开展粉丝福利送书活动,欢迎关注 ~
第8波福利感谢 电子工业出版社 的大力支持
🚀 本期活动为大家带来的是 【好书推荐8】《智能供应链:预测算法理论与实战》
京东:链接
🌈 评论区抽出两位小伙伴免费包邮送出:此文章下任意评论,即可参与抽取书籍活动!ps:每人支持最多3条评论。
抽奖结果将在新一期送书活动最前方展示。

🎉恭喜上期活动中奖粉丝:Saraphines、金灰,看到后请三天内扫码加好友联系。

欢迎大家添加好友,持续发放粉丝福利!


在这里插入图片描述

编辑推荐

适读人群 :供应链数字化领域的算法工程师,供应链管理师,高校物流管理、管理科学等相关专业的学生
本书将视角放在实战化、通用化的供应链算法上面,力求通过简单易懂的方式让读者入门供应链预测算法的实践或工作。本书的撰写人员均有国内外知名院校的硕博经历,具有丰富的业界经验,熟悉从入门到熟练的过程,在供应链预测算法方面有着深入的理论研究和项目经历。

本书主要涉及智能供应链预测领域的算法理论模型与行业实践知识。先从一个商品的需求预测讲起,介绍预测的大体流程,再深入基础的预测模型以及复杂的预测模型策略,诠释预测所需的算法模型工具,最后阐述了多个不同行业的预测实践案例,讲明算法理论的应用场景。其中预测算法囊括了传统的时间序列、统计学习模型和机器学习、深度学习模型,以及不同类型算法的有效融合,为不同的应用场景提供夯实的算法基础。本书既讲解理论知识,又介绍实践案例,深入浅出,使每个读者都能够了解和应用预测算法模型。

内容简介

本书主要介绍人工智能和供应链行业融合中通用化和实战化的预测算法,以及这些预测算法在业界实际应用的案例,旨在通过简单易懂的方式让读者了解供应链相关的应用场景。本书作者具有丰富的业界从业经验,在供应链预测算法方面拥有丰富的理论研究和项目经验,能够将基础模型、进阶模型和行业实践有机地融合,循序渐进地介绍供应链预测算法,使读者在学习过程中感到轻松、有趣,并能应用所学知识。

本书涵盖了智能供应链预测领域的算法理论模型和行业实践知识。本书首先从商品需求预测案例开始介绍预测的基本流程,然后深入讨论基础预测模型原理和复杂预测模型的设计策略,最后通过多个不同行业的预测实践案例来说明算法的应用场景。预测算法包括传统的时间序列、统计学习模型和机器学习、深度学习模型,通过不同类型算法的有效融合,为不同的应用场景提供坚实的算法基础。

作者简介

庄晓天,美国亚利桑那州立大学博士,北京市人工智能高级工程师 ,北京理工大学、上海交通大学 、西安交通大学、北京交通大学、北京邮电大学、东南大学研究生校外导师,中国科学院大学MBA导师。曾在国际SCI期刊、会议发表20余篇论文 ,国家专利授权30余项。

曾获得中国物流与采购联合会科技创新人物奖,科技进步一、二、三等奖,邮政行业科技英才,邮政行业科学技术一、二、三等奖。多次在供应链、物流、人工智能、运筹优化等领域的行业峰会发表主题演讲,参与多个国家自然科学基金项目,省部级重点科技项目。研究成果得到CCTV2《经济半小时》专项报道。

目录

开 篇
第 1 章 从一个SKU的需求预测开始
11 智能供应链与需求预测
12 一个SKU的销量预测
121 数据预处理
122 探索性分析与特征工程
123 预测实践
124 总结
13 智能供应链全景概览
131 企业供应链智能决策六阶理论
132 智能供应链算法全景
基础模型篇
第 2 章 时间序列模型
21 指数平滑模型
211 简单移动平均
212 加权移动平均
213 简单指数平滑
214 指数平滑拓展模型
215 知识拓展
22 ARIMA
221 模型相关基础概念
222 差分自回归移动平均模型
223 条件异方差模型
23 Croston模型及其变体
第 3 章 线性回归模型
31 简单线性回归模型
311 基本概念介绍
312 很优参数求解
313 线性回归拟合优度
314 线性回归基本假定
32 正则化相关的回归
321 正则化
322 套索(Lasso)回归
323 岭(Ridge)回归
324 弹性网络(ElasticNet)回归
33 分位数回归
第 4 章 机器学习模型
41 决策树模型
411 模型介绍
412 特征选择
413 决策树剪枝
414 构建决策树
42 Logistic回归模型
421 模型介绍
422 Logistic回归模型原理
43 XGBoost相关模型
431 AdaBoost模型
432 GBDT模型
433 XGBoost模型
44 LightGBM模型
441 模型介绍
442 模型原理
45 随机森林
451 模型介绍
452 模型原理
第 5 章 神经网络模型
51 神经网络基础
511 感知机与S型神经元
512 神经网络框架
513 神经网络训练的基本概念
52 深度神经网络
521 模型结构
522 模型训练
523 模型优化
53 循环神经网络
531 循环神经网络基础知识
532 LSTM
533 GRU
54 神经网络扩展
541 CNN
542 其他扩展
进阶模型篇
第 6 章 高阶统计模型
61 Theta模型
611 Theta线与Theta分解
612 分解时间序列预测方法
613 Theta模型的预测流程
62 TBATS模型
621 Box-Cox变换
622 ARMA误差建模
623 BATS模型
624 TBATS模型建模思路
63 Bootstrap和Bagging
631 时间序列数据的Bootstrap方法
632 时间序列模型的Bagging预测方法
64 Prophet模型
641 趋势项
642 季节项
643 节假日及事件项
644 模型训练
第 7 章 深度学习模型
71 CNN类深度网络
711 1D-CNN
712 WaveNet
72 RNN类深度网络
721 ESN
722 TPA-LSTM
723 DeepAR模型
724 LSTNet模型
725 ES-RNN模型
73 Transformer模型
731 位置编码
732 编码器结构
733 注意力机制
734 层归一化与前馈神经网络
735 解码器结构
736 输出结构
74 N-beats模型
75 Neural-Prophet模型
76 Informer模型
761 编码层
762 Prob-Sparse Self-attention
763 Self-attention Distilling
764 输出结构
第 8 章 集成模型
81 基础策略
82 WEOS
821 时间序列分类
822 确定模型池
823 滚动回测
824 模型选择与权重确定
825 最终预测
83 FFORMA模型
831 模型框架
832 算法细节
第 9 章 其他模型策略
91 间断性需求预测
911 什么是间断性需求
912 间断性需求预测方法
92 不确定预测
93 迁移学习预测
行业实践篇
第 10 章 制造业
101 备件需求预测
1011 数据特征
1012 预测思路
1013 实践案例
102 产品需求预测
1021 数据特征
1022 预测思路
1023 实践案例
103 预测性维护
1031 数据特征
1032 预测思路
第 11 章 电商零售
111 常规预测
1111 数据处理
1112 预测思路
1113 实践案例
112 促销预测
1121 数据特征
1122 预测思路
1123 实践案例
113 新品预测
1131 数据收集与分析
1132 预测思路
第 12 章 线下零售
121 大型商超
1211 行业背景
1212 数据特征
1213 预测思路
1214 实践案例
122 服装行业
1221 行业背景
1222 数据特征
1223 预测思路
123 家具行业
1231 行业背景
1232 数据特征
1233 预测思路
第 13 章 物流行业
131 物流网络
1311 行业背景
1312 预测思路
1313 预测案例
132 最后一公里
1321 背景
1322 数据特征
1323 预测模型
1324 实践案例
结语
第 14 章 算法工程师的日常
141 算法工程师的一天
1411 代码编写
1412 需求沟通
1413 事务性工作
1414 阅读论文/代码
142 从我想当算法工程师开始
1421 我需要具备什么能力
1422 进阶和突破瓶颈的思路
143 供应链预测算法的未来

精彩书摘

13.1 物流网络

13.1.1 行业背景

物流网络为供应链的高效运转起到了十分重要的作用。它主要关注物品从供应地向接收地流通的过程,提供快递、物流配送、物流仓储等服务,是电商、零售、民营快递等行业的重要组成部分。中国物流行业在近几年取得了长足的发展,物流运输能力不断提升,市场规模保持稳步扩大。物流网络中包括运输、分拣、仓储等多个环节,它们相互作用,支持面向终端客户的履约需求。

然而,物流行业发展至今仍未完全脱离传统物流模式,特别是在现代物流体系建设方面还有很多短板。整体来说,过去几年中国物流的发展仍主要依靠土地、人力等要素成本驱动,面对日益紧缺的土地资源、不断上升的人力成本,行业发展面临瓶颈。物流行业的一个主要突破口便是数字化和智能化,通过统一的数字化管理中心和智能管理工具,赋能传统物流的各个环节,使得物理世界中的物流基础设施在数字世界算法的加持下得以提升效率。其中,智能化包含一些以RFID、IoT为代表的“硬科技”,也同时包括预测、仿真、调度算法等数据科学“软科技”。

本章主要关注物流网络中的算法问题,包括长期线路及节点的规划、物流网络的动态预警、网点装车排班等场景,解决一系列在物流网络整体运营中的优化问题。以大促期间为例,成熟的物流系统会提前预知各区域、站点、线路的包裹量,根据此数据在各环节完成优化。例如,单一站点会对快递员、车辆等资源进行提前安排,在线路维度实时地进行预警以保证时效性,在仓库内对拣货和集单进行优化,通过实时算法决策建立自适应调节机制,为大促的顺利履约保驾护航。

13.1.2 预测思路

物流网络中的预测与前面章节中提到的供应链的需求预测有所不同,它主要关注物流某一环节的货量、单量等信息。在本章中,我们考虑比较常见、有代表性的线路和首末分拣货量预测问题。由于物流网络线路很多且关系繁杂,因此该问题的预测维度一般会考虑较粗维度(如首分拣—末分拣,Origin-Destination,简称OD),或者选择节点之间的干线货量。

  1. 数据特征

物流网络中的货量数据与常见的供应链商品数据有较大的差别,因此我们需要着重分析以下几个常见特征,并设计相应的模型机制加以处理。

(1)干线或OD一般较稳定,新增预测维度情况较少:一般来说,货量预测所关注的线路或OD是比较稳定的。在成熟的物流网络中,我们一般可以获取较长时间的历史数据,查看长期历史数据的依赖关系。另外,OD的数量一般不会有很大的变化,这就意味着出现新增预测维度的情况较少,这与在消费品领域中经常出现的新品预测是十分不同的。稳定的预测维度数量可以使我们从历史时间序列中充分挖掘信息,得到与时间序列相关的模型参数。

(2)预测目标较多,一般不限于预测货量及单量:在物流网络中,预测模型一般不会关注实际的商品,但需要有多目标的结果输出,包括单量、货量、体积、重量等。在整体物流网络的优化中,预测会作为一个灯塔项目,使用统一的数据模型及处理模块生成未来多维度数据,以供不同优化模块使用。

(3)部分场景下预测的时间粒度较细,需要挖掘细时间维度下的特征:与供应链的商品补货场景不同,物流网络中的时间序列预测不仅包括天粒度的数据,还包括小时甚至分钟级别的预测数据。这就导致了历史数据往往很长,需要挖掘的信息隐藏在长时间周期的统计关联中。具体在数据中,模型需要建立相应的机制进行多效应的融合处理。

(4)时间序列集中呈现季节性和大促效应:各线路货量数据一般可呈现长周期性、多周期性叠加等复杂季节性,且在大促期间会有明显波动和上涨趋势。

  1. 预测思路

回顾针对物流数据的预测案例,为了解决以上行业数据所展现的问题,基本思路有以下几方面的特点。

(1)采用时间序列维度的模型机制,处理季节性、大促效应等特征:由于网络中的时间序列比较稳定,且季节性、趋势性等特征及大促效应比较明显,因此在模型中需要设定相应的机制着重进行处理。此时不仅需要考虑一些全局变量,提取跨时间序列的特征,还需要将单个时间序列内部的特征分别提取出来,用于整体预测模型的建立。这也为我们将传统时间序列与机器学习或深度学习的结合提供了使用条件。

(2)扩大模型的特征提取区域,着重解决长序列中长时依赖问题:面对较细时间粒度的预测任务,在预测模型中不仅需要对短期特征进行刻画,同时还需要对长期存在的依赖关系进行充分挖掘。传统的时间序列预测模型主要关注短期影响,近年来提出的深度学习模型解决了部分长期存在的依赖关系的问题。

(3)增加多维度信息来刻画事件或时间序列信息:物流网络中的货量的影响因子较多,包括事件因素和网络自身信息,如分拣中心、地域信息等。此时我们需要对不同类型的信息在模型中予以编码,并将此类效应的编码值作为模型的一部分进行学习,从而较好地融入多维度的数据信息。

前言/序言

我为什么要写这本书

2012年,我博士毕业,从美国裸归,开始了职业生涯之旅。彼时的国内互联网方兴未艾,热闹纷繁,大众创业,万众创新,似乎每一天都有新的商业模式在兴起,都有新的互联网公司在诞生,都有新的传奇故事在演绎。对于那时的我来说,算是站在了学生时代的顶峰,对北京,对职场,对未来,有着无限的描绘和憧憬,感觉属于自己的时代终于要来了。但如同电影里的经典桥段一样,现实中的职场客观、理性,甚至冰冷、残酷,不相信眼泪,给那时缺乏认知、缺乏经验、更缺乏心理准备的我当头一棒。心心念念的光鲜职场与改变世界,变成了跑腿打杂与纸上谈兵,理论与实践的严重脱节,导致我一度陷入了迷茫。几经辗转,历经磨难,我才误打误撞地走进了供应链行业,从一个初级算法科学家开始,一步步地打开了自己的世界。

作为一个新入行的毕业生,我内心的感觉是复杂的。一方面希望有存在感,喜欢将学校里最复杂的、行业里最炫酷的算法模型摆出来,体现自己的价值;另一方面又是忐忑不安的,不熟悉业务场景,不了解项目落地,不知道如何从业务、数据、算法的整体去思考,缺乏从理论到实践的“套路”。那时的我买了很多书,要么是纯理论的,类似大学里的教材,要么是纯业务的,好像什么都说了,又好像什么都没说。那时的我就在想,要是能有一本“懂我”的书该有多好,就像那本《演员的自我修养》一样,白天带在身上,翻开就能找到答案,夜里放在枕下,带给自己精神力量。确实,在那个职业生涯“小白时期”的我,太需要一本能给自己安全感和自信心的书了。

之后的十多年里,在经历了国企、民企、外企的近百次面试,经历了IBM、亚马逊、唯品会、京东的近百个项目,我才逐渐修炼出一些实用的“内功心法”,并且都写在了我的一个手账本上,里面记录的都是最干的干货,包括如何应对面试、如何落地项目、如何提升自我。我很清楚从小白到老兵的心路历程,能感同身受地理解“新手”到底需要什么。之所以想把这些写成本书,就是想为那些即将毕业的同学,为那些刚刚踏入行业的新人,分享这些带着温度与汗水的经验,希望读者能够一路坦途,尽早成为那个更优秀的自己。

这本书能带给你什么

本书是我的智能供应链系列图书的开端,主要围绕智能供应链的预测展开。预测对于我们来说,是什么?就是一直苦苦追寻,但又求而不得的事情。就像人生一样,每个人都希望努力当下,着眼未来,但谁也没有办法准确地预见未来。供应链行业的预测也一样,是整个链条的源头,也是行业内大家最关心的事情。也许很多人不懂数据,很多人不懂算法,但只要提起预测,谁都能跟你讲几句。我希望通过本书,让即将或者刚刚入行的你,快速成为预测领域的半个专家。

在本书的构思设计中,我和伙伴们努力将内容简化,注重实战应用,希望能够将读者快速拉进实际工作的硝烟战火中。我们从一个商品的预测讲起,介绍预测的工作流程,再深入基础算法模型、复杂算法策略,诠释预测所需的模型工具,最后列举多个行业的实践案例,阐明算法理论的应用场景。之所以将算法策略与行业实践进行有机的融合,就是想让读者更有代入感,看得有意思、学得有信心、用得有底气。

在本书的编写过程中,我深知自己的认知和能力有限,很难涵盖供应链领域与算法理论结合的所有知识点,书中内容也难免存在一些错误和纰漏。我诚挚地期望广大读者能支持和喜欢这本书,更期待读者的宝贵意见和建议,让我们共同推动这个领域的发展。

致谢

记得上一次写致谢,还是十几年前在我的博士论文里,在烈日炎炎的菲尼克斯,在那个孤独安静的出租屋。真没想到日子会过得这么快,弹指一挥间,转眼已十年。请宽恕我的词穷,允许我说那句土话:时光荏苒,岁月如梭。十几年的光阴,可以让一个意气风发的年轻人,变成一个谨慎内敛的中年人;让一个相信技术改变世界的博士,变成一个更愿意顺势而为的打工人。虽然我博士论文的研究方向是基于不确定性的优化,但其实骨子里我是一个特别不喜欢变化的人。相比于对变化的好奇,我更喜欢对确定的坚守;相比于对“新”的追求,我更喜欢对“旧”的长情。可这一路光阴下来,伴随着时代的潮起潮落,环境的辗转腾挪,身边能始终不变的“确定”,实在是太稀有了。唯有我的家人,为我扬帆,等我归航,十几年相伴,从未离开。

感谢我的父母,在我这十几年的风风雨雨中,始终坚定地站在我的身后。无论是2007年的大连暴雪,还是2012年的北京大雨;无论是留学申请的屡败屡战,还是回国工作的四处碰壁,你们都一直坚定地相信我的判断,相信我的选择。十几年一路飘摇,蓦然回头,却发现你们已经两鬓银丝,日渐消瘦。虽然今天的我,已经成长为大人眼中那个“别人家的孩子”,但有的时候我仍然希望一觉醒来,爸爸还在厨房里准备早饭,妈妈还拎着抹布在家里擦拭;一切还都是原来的样子,你们还都年轻;时间可以慢慢地流淌,我可以慢慢地长大;我对你们的爱,还可以重来一遍。

感谢我的太太,在我还默默无闻的时候,就选择义无反顾地相信我,跟着我。没有婚礼,没有豪宅,没有浪漫,你一直在用最美好的年华,为我的梦加油。陪我穿越冬夏,走过漫长的季节,陪我跨越南北,走过最长的旅途,陪我熬过长夜,走过至暗的时刻。一路下来,你是那么的安静、温暖与宽容,像照顾孩子一样在陪伴我成长,关注着我的需求、我的情绪、我的梦想,默默地把你的一切都排在了后面。也许真的是心有灵犀,就在我写这段文字的时候,你给我发来消息说,今年是你来北京的第十年,希望第二个十年我还会陪着你。我想说,人生其实不止如初见,下一个十年,都有我的陪伴,下一程风雨,都由我来遮挡,爱你如初,从未改变。

感谢我的儿子,你是我写过最美的情书,也是我一生最珍贵的礼物。从你睁开双眼,我们认识的那天起,我的人生仿佛重启了一般,交织着幸福与责任,也随之改变了轨迹。感谢你的到来,你身上透出的坚强与笃定,内心深藏的柔软和细腻,眼里泛出的纯真与善良,满足了我对完美孩子的所有想象。我希望能够在这个世上活很久,和妈妈一起,陪你看看这个复杂而又美好的世界;希望能将我所有的经历,所有的人生感悟,都讲给你听;希望日子能一直如此刻般美好,平平淡淡,安静温暖。我陪你长大,你陪我变老,你是我一生的软肋,更是我毕生的铠甲。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/5257.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Notion是什么,Notion软件下载,Notion官方网站在哪里?国内用户Notion怎么订阅升级会员?

Notion是什么 Notion,一款强大的多功能工具,可用于组织笔记、任务、项目、数据库和文档等。 Notion软件下载 这个到Notion官方网站下载就可以了。 怎么订阅Notion会员 注册好了Notion的账号,来到首页,点击设置,左边…

虚析构与纯虚析构

这里的new Cat("Tom"&#xff09;是由于基类函数中的构造函数里面带有string变量 1. 法一:利用虚函数&#xff0c;虚化基类中的析构函数 virtual ~Animal() { cout << "动物的析构函数调用" << endl; } 2. 法二:利用纯…

JAVA自定义日期选择器

下载jar地址&#xff0c; https://toedter.com/jcalendar/ jar包下载地址 依赖包如下图所示&#xff1a; 整个项目代码已经上传到CSDN https://download.csdn.net/download/qq_30273575/89241601?ydrefereraHR0cHM6Ly9tcC5jc2RuLm5ldC9tcF9kb3dubG9hZC9tYW5hZ2UvZG93bmxvYWQ…

ROS1快速入门学习笔记 - 10服务数据的定义和使用

目录 一、服务模型&#xff08;客户端/服务器&#xff09; 二、自定义服务数据 1. 定义srv文件 2. 在package.xml中添加功能包依赖 3. 在CMakeLists.txt添加编译选项 4. 编译生成语言相关文件 5. 配置服务器/客户端代码编译规则 6. 编译并运行程序 7. Python文件 一…

图论单源最短路径——spfa

【模板】单源最短路径&#xff08;弱化版&#xff09; 本题用的spfa 题目背景 本题测试数据为随机数据&#xff0c;在考试中可能会出现构造数据让SPFA不通过&#xff0c;如有需要请移步 P4779。 题目描述 如题&#xff0c;给出一个有向图&#xff0c;请输出从某一点出发到…

若依:Linux Centos 7.9 安装部署RuoYi前后端集成版

目录 1.虚拟机操作系统版本 2.删除旧的jdk 3.下载JDK 17 &#xff1a; 4.下载 mvn 3.9.6&#xff1a; 5.下载mysql:5.7.44版本 6.git下载若依&#xff1a; 7.修改数据库连接&#xff1a; 8.mvn 清理和打包 9.启动若依&#xff1a; 1.虚拟机操作系统版本 2.删除旧的jd…

几个容器网络问题实战解析

容器云平台和容器网络紧密结合&#xff0c;共同构建了容器化应用程序的网络基础设施&#xff0c;实现了容器之间的通信、隔离和安全性。文中容器云平台采用的容器网络组件是calico&#xff0c;这个是业界普遍采用的一种方案&#xff0c;性能及安全性在同类产品中都是比较好的。…

什么是视频号小店?应该如何操作?全网最详细的解答来了!

大家好&#xff0c;我是电商糖果 “视频号小店”这个词这两年在电商圈很火&#xff0c;但是因为它是2022年下半年才出来的。 就有很多刚接触电商的朋友&#xff0c;对它并不了解。 于是就有不少朋友问糖果&#xff0c;视频号小店去哪里找&#xff1f;什么是视频号小店&#…

汽车信息安全入门总结(2)

目录 1.引入 2.汽车信息安全技术 3.密码学基础知识 4.小结 1.引入 上篇汽车信息安全入门总结(1)-CSDN博客主要讲述了汽车信息安全应该关注的点&#xff0c;以及相关法规和标准&#xff0c;限于篇幅&#xff0c;继续聊信息安全相关技术以及需要掌握的密码学基础知识。 2.汽…

OpenAI发布GPT-4.0使用指南

大家好&#xff0c;ChatGPT 自诞生以来&#xff0c;凭借划时代的创新&#xff0c;被无数人一举送上生成式 AI 的神坛。在使用时&#xff0c;总是期望它能准确理解我们的意图&#xff0c;却时常发现其回答或创作并非百分之百贴合期待。这种落差可能源于我们对于模型性能的过高期…

区块链技术下的DApp与电商:融合创新,开启商业新纪元

区块链技术的蓬勃发展正引领着一种新型应用程序的崛起——去中心化应用程序&#xff08;DApp&#xff09;。DApp并非传统的中心化应用&#xff0c;它构建于去中心化网络之上&#xff0c;融合了智能合约与前端用户界面&#xff0c;为用户提供了全新的交互体验。智能合约&#xf…

webpack 常用插件

clean-webpack-plugin 这个插件的主要作用是清除构建目录中的旧文件&#xff0c;以确保每次构建时都能得到一个干净的环境。 var { CleanWebpackPlugin } require("clean-webpack-plugin") const path require("path");module.exports {mode: "de…

MATLAB 2024a软件下载安装教程

1-首先下载Matlab&#xff0c;以下迅雷云链接&#xff0c;里面有全版本的matlab&#xff0c;根据自己的需要下载即可&#xff0c;建议下载最新版的&#xff0c;功能会更多&#xff0c;当然内存也会更大。 迅雷云盘迅雷云盘https://pan.xunlei.com/s/VNgH_6VFav8Kas-tRfxAb3XOA…

大数据面试题 —— Spark数据倾斜及其解决方案

目录 1 调优概述2 数据倾斜发生时的现象3 数据倾斜发生的原理4 如何定位导致数据倾斜的代码4.1 某个 task 执行特别慢的情况4.2 某个 task 莫名其妙内存溢出的情况5 查看导致数据倾斜的 key 的数据分布情况6 数据倾斜的解决方案6.1 使用 Hive ETL 预处理数据6.2 过滤少数导致倾…

神之浩劫2下载教程 MOBA新游神之浩劫2在哪下载/怎么下载

《神之浩劫2Smite 2》重新定义了MOBA游戏的征服模式&#xff0c;为玩家带来更多的互动和进展。最近的开发者深度挖掘展示了游戏地图的全新设计&#xff0c;既简化了基本操作&#xff0c;又丰富了游戏选择。游戏中的敌人也有了新的进展方式。例如&#xff0c;击败火巨人和金之怒…

vue 脚手架 创建vue3项目

创建项目 命令&#xff1a;vue create vue-element-plus 选择配置模式&#xff1a;手动选择模式 (上下键回车) 选择配置&#xff08;上下键空格回车&#xff09; 选择代码规范、规则检查和格式化方式: 选择语法检查方式 lint on save (保存就检查) 代码文件中有代码不符合 l…

如何运用结构化思维来规划个人发展

结构化思维不仅在工作中非常有用&#xff0c;在日常生活中同样可以发挥巨大作用。无论是解决家庭琐事、规划个人发展&#xff0c;还是做出重要决策&#xff0c;结构化思维都能帮助我们更有条理地思考和行动。 一、解决生活中的问题 生活中总会遇到各种各样的问题&#xff0…

力扣HOT100 - 131. 分割回文串

解题思路&#xff1a; class Solution {List<List<String>> res new ArrayList<>();List<String> pathnew ArrayList<>();public List<List<String>> partition(String s) {backtrack(s,0);return res;}public void backtrack(Str…

vue知识

一、初始vue Vue核心 Vue简介 初识 (yuque.com) 1.想让Vue工作&#xff0c;就必须创建一个Vue实例&#xff0c;且要传入一个配置对象 2.root容器里的代码依然符合html规范&#xff0c;只不过混入了一些特殊的Vue语法 3.root容器里的代码被称为【Vue模板】 4.Vue实例和容器…

Web-SpringBootWeb

创建项目 后面因为报错&#xff0c;所以我把jdk修改成22&#xff0c;仅供参考。 定义类&#xff0c;创建方法 package com.start.springbootstart.Controller; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotati…