24.8.26学习心得

验证数据集(Validation Set)和测试数据集(Test Set)在机器学习和深度学习中都是非常重要的概念。它们各自有不同的用途和目的。下面详细解释两者之间的区别:

1. 验证数据集(Validation Set)

目的

  • 超参数调整:验证数据集主要用于调整模型的超参数,如学习率、正则化系数、网络层数等。
  • 模型选择:用于选择最佳模型。例如,在交叉验证中,通过在验证数据集上的表现来选择性能最好的模型。
  • 防止过拟合:帮助评估模型在未见过的数据上的表现,从而避免过拟合。

使用时机

  • 在训练过程中,通常会在每个epoch结束时使用验证数据集来评估模型的表现
  • 如果模型在验证数据集上的表现比在训练数据集上的表现差很多,说明模型可能存在过拟合。

示例: 假设你在训练一个神经网络,你需要调整学习率、批量大小等超参数。你可以使用验证数据集来评估不同超参数组合的效果,并选择最优的组合。

2. 测试数据集(Test Set)

目的

  • 最终模型评估:测试数据集用于评估最终选定模型的性能。一旦模型训练完成并通过验证数据集进行了调整,就可以使用测试数据集来评估模型在未知数据上的表现。
  • 真实世界表现:测试数据集提供了模型在真实世界数据上的表现估计。

使用时机

  • 在模型训练和超参数调整完成后,使用测试数据集进行最终的性能评估。
  • 通常只在模型训练和验证阶段结束后才会使用测试数据集。

示例: 假设你已经通过验证数据集选择了最佳模型,现在你需要知道这个模型在完全未见过的新数据上的表现。这时,你会使用测试数据集来评估模型的最终性能。

区别总结

  • 验证数据集

    • 用于调整模型的超参数。
    • 用于选择最佳模型。
    • 在训练过程中频繁使用。
    • 帮助防止过拟合。
  • 测试数据集

    • 用于最终模型评估。
    • 用于估计模型在真实世界数据上的表现。
    • 在模型训练和验证阶段结束后使用。
    • 只有一次机会使用,以避免数据泄露。

数据划分

通常,数据集会被划分为三个部分:

  1. 训练数据集(Training Set):用于训练模型。
  2. 验证数据集(Validation Set):用于调整超参数和选择模型。
  3. 测试数据集(Test Set):用于评估最终模型的性能。

K折交叉验证(K-Fold Cross Validation)是一种统计学中用来评估机器学习模型性能的技术。这种方法有助于更好地理解模型在未知数据上的泛化能力,并能减少模型过拟合的风险。下面是关于K折交叉验证的基本概念、步骤以及优缺点的详细讲解。

K折交叉验证的概念

K折交叉验证是一种将可用数据分成K个子集或“折叠”的方法。然后,进行K次迭代,在每次迭代中,其中一个折叠被保留作为验证数据集(测试集),而剩下的K-1个折叠被用作训练数据集。每个折叠都会被用作验证集一次,这样每个观察值都会恰好被用作验证一次。最终,交叉验证的分数是这K次结果的平均值。

K折交叉验证的步骤

  1. 数据准备:首先,将整个数据集随机打乱,然后将其均匀地分成K个子集或“折叠”。
  2. 模型训练与验证
    • 对于i = 1, ..., K:
      • 使用第i个折叠作为验证数据集。
      • 使用剩余的K-1个折叠的数据作为训练数据集。
      • 在训练数据集上训练模型。
      • 在验证数据集上评估模型性能。
  3. 性能度量:收集所有K次迭代中的性能度量(如准确率、精确度、召回率等),并对这些度量求平均,以得到模型的总体性能估计。

优点

  1. 减少方差:通过多次训练和验证,可以得到更稳定的性能估计。
  2. 充分利用数据:因为每个样本都被用作验证一次,所以这种方法能够充分利用有限的数据资源。
  3. 减少过拟合风险:通过在不同的数据分割上训练和验证模型,可以减少过拟合的风险。

缺点

  1. 计算成本较高:相较于单次的训练/验证拆分,K折交叉验证需要K次训练过程,因此计算开销更大。
  2. 可能仍然存在偏差:如果K值选择不当或者数据本身具有某些结构特征,则可能会导致性能估计的偏差。

在深度学习中,“权重衰减”(Weight Decay)是一种正则化技术,它被用来防止模型过拟合。权重衰减实际上是L2正则化的一种形式,通过在损失函数中加入一个额外的惩罚项来控制模型复杂度,从而使模型参数不会变得过大。

基本概念

权重衰减的主要目的是为了增加模型的泛化能力,使其不仅能在训练数据上表现良好,也能在未见过的数据上保持较好的性能。权重衰减通过对模型参数(权重)的大小施加惩罚,迫使它们趋向于较小的值,从而简化模型,减少过度拟合的风险。

实现原理

在没有正则化的标准监督学习任务中,我们的目标是最小化一个损失函数 LL,该损失函数衡量了模型预测与实际标签之间的差异。例如,在回归任务中,我们可能会使用均方误差(MSE)作为损失函数。

作用机制

权重衰减的工作方式是这样的:在每一次梯度下降更新过程中,除了考虑训练数据带来的梯度更新外,还会有一个额外的方向指向权重的原点(即所有权重都为零的状态),这个方向的强度由正则化系数 λλ 和权重本身的大小决定。

这意味着,在每次迭代中,权重都会朝向更小的值更新,因为较大的权重会带来更大的正则化惩罚。这样一来,权重就不会无限制地增长,从而帮助模型保持简单,并且在一定程度上避免了过拟合。

应用场景

权重衰减在深度学习中的应用场景非常广泛,几乎所有的深度学习模型都可以从中受益。特别是在数据量相对较少或者模型结构较为复杂的情况下,权重衰减能够有效地帮助模型学习到更加通用的特征表示,提高模型的稳定性和泛化能力。

总结

权重衰减通过在损失函数中引入一个依赖于权重大小的惩罚项,强制模型参数保持在合理范围内,从而帮助模型在训练过程中避免过拟合。这种技术特别适用于需要从有限数据中学习出强大表征能力的场景。通过调整正则化系数 λλ,我们可以控制正则化的效果,找到合适的模型复杂度与泛化能力之间的平衡点。

optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=0.01)
  • 使用随机梯度下降优化器,并设置学习率和权重衰减

一个之前一直不太懂的点:

class LinearModel(nn.Module):def __init__(self):super(LinearModel, self).__init__()self.linear = nn.Linear(1, 1)  # 输入维度为1,输出维度为1def forward(self, x):return self.linear(x)
------------------------------------------------------------------
class SingleLayerNet(nn.Module):def __init__(self):super(SingleLayerNet, self).__init__()self.fc1 = nn.Linear(1, 1)  # 单个全连接层,输入维度为1,输出维度为1def forward(self, x):x = torch.relu(self.fc1(x))return x

 第一个:这是一个简单的线性模型,它只有一个线性层 nn.Linear(1, 1),没有激活函数。这意味着模型直接从输入映射到输出,没有非线性的变换。输入和输出都是单维的,因此非常适合线性关系的数据拟合任务。

第二个:这个模型也包含一个线性层 nn.Linear(1, 1),但是它在前向传播过程中应用了 ReLU 激活函数。ReLU 是一个非线性函数,定义为 max⁡(0,x),这使得模型能够捕捉非线性的关系。尽管这个模型也只有一个隐藏层,但由于引入了非线性激活,它比纯粹的线性模型有更多的表达能力。

总结一下,主要区别在于:

  • LinearModel 不使用任何激活函数,所以它是一个线性模型。
  • SingleLayerNet 使用了 ReLU 激活函数,使得模型具有非线性特性,可以拟合更复杂的函数。

在实际应用中,如果数据的关系确实是线性的,那么 LinearModel 可能就足够了。但如果数据存在非线性关系,或者需要模型具备更强的表达能力,那么 SingleLayerNet 会更适合。需要注意的是,在 SingleLayerNet 中,ReLU 应用于输出之前,但因为这里输出层也是唯一的隐藏层并且只有一维,这样的设计在实践中可能不是最佳选择,通常我们会为隐藏层设计更多的神经元,以便更好地捕捉数据中的复杂模式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/52575.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机基础知识总结(八股文--计算机网络、操作系统、数据库、c++、数据结构与算法)

一、操作系统 0.内存管理 01.什么是虚拟内存?为什么需要虚拟内存? 虚拟内存为程序提供比实际物理内存更大的内存空间,同时提高内存管理的灵活性和系统的多任务处理能力。虚拟地址空间就是进程所能看到的内存空间,这段空间是连续…

【案例61】update driver error

问题现象 顾问在保存数据源时报“update driver error”错误,重启服务器,重启sysConfig.bat后问题依旧。 问题分析 之前碰到这类问题发现是权限的问题。所以先去检查了相关文件夹的权限。 查看控制台发现客户用的是非Administrator用户登录&#xff0…

数学建模2024国赛时间及事项安排

2024年的全国大学生数学建模竞赛即将拉开帷幕。考虑到许多同学可能是首次参与此类赛事,尚不清楚如何进行有效的时间安排,博主在此整理了以往参赛的经验和时间管理策略,希望能为大家提供一些有益的参考,更从容地应对国赛。 本届全国…

网络安全 DVWA通关指南 DVWA File Upload(文件上传)

DVWA File Upload(文件上传) 文章目录 DVWA File Upload(文件上传)修复建议 LowMediumHighImpossible 修复建议 1、使用白名单限制可以上传的文件扩展名 2、注意0x00截断攻击(PHP更新到最新版本) 3、对上传…

Ubuntu 20.04 源码编译安装OpenCV 4.5.0

源码安装 OpenCV 4.5 官方文档: OpenCV: Install OpenCV-Python in Ubuntu 1. 安装编译依赖 sudo apt install build-essential cmake git pkg-config libgtk-3-dev \ libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \ libxvidcore-dev libx264-dev …

出口MID电能表到欧洲市场

出口MID电能表到欧洲市场! 浙江永泰隆电子有限公司在研发和将MID能量计出口到欧盟市场方面具有丰富的经验。以下是突显该公司专业性的概述: 公司概况: 浙江永泰隆电子有限公司是一家专注于先进能量测量解决方案的制造商,特别是…

【栈】| 力扣高频题: 有效的括号

🎗️ 主页:小夜时雨 🎗️专栏:算法题 🎗️如何活着,是我找寻的方向 目录 1. 题目解析2. 代码 1. 题目解析 题目链接: 力扣20:https://leetcode.cn/problems/valid-parentheses/description/ 本…

linux系统中USB模块基本原理分析

大家好,今天主要给大家分享一下,USB设备的发展历程。 第一:USB发展变化 随着时代的发展,USB模块也随之不断的升级。 USB1.1:规范了USB低全速传输; USB2.0:规范了USB高速传输,采用NRZI(反向不归零)编码(NRZI采用8bit编码方式),位填充(在数据进行NRZI编码前…

虚幻5|制作玩家血量,体力(还未编辑,只用于引用)

未编写,仅引用 优化后: 把增加生命,减少生命,也可以用在体力里,更改如下 限制浮点,如果血量或体力按10来扣,如果你的血量降低到5,那么就会以5的数值来扣,而不会扣成-5…

es 7.17.23安装ik插件启动失败,access denied,Permission

情况简述 windows平台,下载了7.17.23的es以及7.17.23的ik分词器的zip包之后( 下载地址(官方推荐的):Index of: analysis-ik/stable/ ),解压该ik的包到es的plugins下,目录结构&…

Webpack中的 HTTP 压缩

http压缩介绍 http压缩,是指一种内置在服务器和客户端之间改进传输速度和带宽利用率的方式。 http 压缩的流程: http 数据在服务器发送前,通过 webpack配置进行压缩;兼容的浏览器在向服务器发送请求时,在请求头中会…

ElasticSearch 的单点部署环境搭建

一、摘要 ElasticSearch 是一个开源的 分布式、RESTful 的 搜索和分析引擎 ,可以用来解决使用数据库进行模糊搜索时存在的性能问题,适用于所有类型的数据,包括文本、数字、地理空间、结构化和非结构化数据 ElasticSearch 使用 Java 语言开发&…

删除Vue2残留配置文件解决异常:Cannot find module ‘@vue/babel-plugin-transform-vue-jsx‘

背景 完成Vue2代码升级为Vue3后,将新代码上传至代码库。在修改源代码库代码后,启动项目,提示:Cannot find module ‘vue/babel-plugin-transform-vue-jsx‘,尝试安装该第三方库后仍然无效。 解决方案: 删…

带你快速了解WEB应用服务器TOMCAT

目录 一、WEB技术 1.1 HTTP协议和B/S 结构 1.2 前端三大核心技术 1.2.1 HTML 1.2.2 CSS(Cascading Style Sheets)层叠样式表 1.2.3 JavaScript 二 WEB框架 2.1 web资源和访问 2.2 后台应用架构 2.2.1 单体架构 2.2.2 微服务 2.2.3 单体架构和…

C++调用python文件,python引用的其他依赖库,在c++里如何处理

前面我写过一篇《Visual Studio 2022Python3.11实现C调用python接口》,最近有朋友问C调用python文件,python引用的其他依赖库,需要在c中处理吗? 实践出真知,对于这个问题,我得先验证,然后得出…

QtCreator错误:Qt没有被正确安装,请运行make install(适用Qt4、Qt5、Qt6)

一、问题环境 (1)Windows 10企业版,64位 (2)Visual Studio 2019 (3)Qt5.12.12 x64版本(自己编译) (4)Qt Creator 12.0.1 二、问题描述&#…

leetcode518:零钱兑换II

零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…

使用CORS解决跨域问题

CORS(Cross-Origin Resource Sharing)跨域资源共享 因为浏览器的同源策略才出现了跨域问题。 CORS是一套机制,用于浏览器校验跨域请求。 它的基本理念是: 只要服务器明确表示允许,则校验通过服务器明确拒绝或没有表…

双臂机器人协作/合作阻抗控制

机器人阻抗控制是一种基于力的控制方法,其核心在于通过调整机器人的阻抗特性(如刚度、阻尼等),使机器人在与环境交互时能够表现出特定的力学行为。以下是对机器人阻抗控制的详细解析: 一、定义与内涵 机器人阻抗控制是指通过调整机器人的阻抗特性(如刚度、阻尼等),使…

TCP、HTTP以及RPC的梳理

TCP:一种面向连接的、可靠的、基于字节流的协议 原生 TCP 和粘包问题 TCP 是一种面向连接的、可靠的传输层协议,负责在网络上发送字节流数据。它提供了流量控制、错误检测和重传等机制,但并不对应用层的数据进行分隔或解析。 粘包问题&#…